Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Algebra: 7.1 – 7.4 Monomials Day Section Day 1 7.2 1. How do I multiply monomials? Worksheet #1 Day 2 7.1 1. How do I simplify negative exponents? Worksheet #2 Day 3 7.3 1. How do I simplify a monomial raised to a power? Worksheet #3 Day 4 7.4#1 Day 5 Day 6 Essential Questions 1. How do I divide monomials? Review of monomials 7.4#2 1. How do I divide monomials Day 7 Review 7.1-7.4 Day 8 Review 7.1-7.4 Day 9 TEST 7.1-7.4 Assignment Worksheet #4 Worksheet #5 Worksheet #6 Algebra: Chapter 7.1 – 7.4 Monomials 7.2 Notes: Multiplying Monomials What is a monomial? What is not a monomial? When you multiply monomials, you _____________ the exponents!!! Ex 1: Multiply. a. y y 8 7 b. 2 y 4 3 y c. (3x)( 2x 2 ) 5 2x y 5 z x 3 y 3 z 6 e. (-5xy)( 4x 4 y 8 ) f. h. (-5abc3)(4a3b6c) i. (-5a)(6b)(7c)(-d) 2 d. g. 5 x 3x 4 7 b c3 d 2 c d j. (-6abc9)(4a2b7c) ***Fun Fact: if you multiply an odd number of negatives you will get a ____________________ If you multiply and even number of negatives you will get a __________________ 7.1 Notes: Zero and Negative Exponents Warm-Up: Complete the table. Use a calculator if necessary. Express all values as fractions (no decimals). 23 = 53 = 103 = 22 = 52 = 10 2 = 21 = 51 = 101 = 20 = 50 = 100 = 2 1 = 51 = 101 = 2 2 = 5 2 = 102 = Can you make any conclusions about negative exponents or zero as an exponent? Properties Zero as an Exponent: For every nonzero number a, Negative Exponent: For every nonzero number a and integer n, Simplify each expression. 1. 37 0 2. 34 3. 5 5 2 5. 40 6. 1 50 7. 10s 2 12t 4. 3 6 1 8. 10x 3 9. 3 2 10. 4 h j 10 fg 5 h0 11. h 2 5stv 2 12. 3 6rm 2. 2 4 3. 110 4. 5 7. 4x 3 y 0 8. 2 4 3 You try it! Simplify each expression. 1. 131 5. 15 p 0 6. 2 51 8 m 2 4 n 1 2 0 7.3 Notes: Raising a monomial to a power When you raise a monomial to a power you _____________ the exponents!!! Ex 1: Simplify. 3 a. 3 2 b. 2 3 3 Ex 2: Simplify. a. x d. x y z g. 2x y 4 3 3 b. 5 8 3 3 2a 3 e. 3xy c. 4x y f. x c. 2a b ab 2 2 5 9 4 . 5 3 Ex 2: Simplify: 3s 4 3 a. 3 s 2 1 2 3 xy x y b. 2 2 3 2 2 3 7.4#1 Notes: Dividing Monomials Dividing Powers with the Same Base We can use the properties of exponents to divide powers with the same base. Expand the numerators and denominators. Then divide out each fraction… 35 = 33 46 = 47 When dividing two monomials with the same base you __________the exponents!! Ex 1: Simplify each expression. 33 a. 2 3 d. x6 y9 x2 y5 y7 b. 4 y m4 c. m5 14 x3 y 9 5 e. 2 xy 18 y 8 2 3 f. 4 x ( y ) Ex 2: Simplify. 14 x9 y 9 12 10 a. 24 x y 48ab5c 13 9 b. 16b c 7.4#2 Notes: Dividing Monomials Raising a Quotient to a Power To raise a quotient to a power, raise the numerator and the denominator to the power and simplify if possible. 5 n = p 2 3 = 5 Ex 1: Simplify. 5 x 7 y a. 10 x3 y 2 12m7 n1 p3 c. 6m1n2 p3 b. m4 n2 p5 mn3 p5 2x y 1 4 xy d. Ex 2: Simplify. 3x 4 3 a. 2 y 3 3 x 4 y 5 y 3 b. 2 3 5s 6t c. 2 31 abc 1 2 3 e. 4 a b c 2 x 3 y 2 2 d. 3 x y 1 2