Download Dissociative Recombination in Space

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
•Interstellar and Circumstellar
Chemistries: The Role of
Neutral-Neutral Reactions
ERIC HERBST
DEPARTMENTS OF PHYSICS AND
ASTRONOMY
THE OHIO STATE UNIVERSITY
dense (giant) molecular clouds
organic molecules
H
core
4 -3
n = 10 cm
T = 10 K
2
PDR’s
embedded
stars
hot
ionized
gas
HII region
protoplanetary disk
studied in millimeter-wave and IR
GAS PHASE INTERSTELLAR/CIRCUMSTELLAR MOLECULES - HIGH RESOLUTION (9/02)
_____________________________________________________________________________________________
H2
KCl
HNC
C3S
C5
C6H
HC4CN
HCO
NH3
CH3
H3O+
CH
AlCl
CH4
CH3OH
AlF
HCO+
H2CO
SiH4
CH3SH
NH
PN
HOC+
H2CS
CH2NH
C2H4
OH
SiN
HN2+
HCCH
H2C3(lin)
CH3CN
C2
SiO
HNO
HCNH+
c-C3H2
CH3NC
C7H, C6H2
C8H
HCOOCH3
CH3COOH
CH3C2CN
H2C6(lin)
C6H2
H2COHCHO
C2H5OH
(CH3)2O
CH+
CN
SiS
HCS+
H2CN
CH2CN
HC2CHO
C2H5CN
CO
CO+
SO+
C3
C2O
CO2
C2S
C3H(lin)
c-C3H
NH2CN
CH3C4H
CH2CO
NH2CHO
HC3NH+
HCCN
HCOOH
C4H2
H2C4(lin)
HNCO
SiC3
HOCO+
C4H
HNCS
C2CN
C3O
NaCN
HCCNC
HNCCC
C4Si
H2COH+
CSi
+
CP
H3
CS
HF
NO
CH2
NH2
SiC2
SiCN
SO2
NS
SO
HCl
NaCl
H2O
H2S
C2H
HCN
OCS
MgNC
MgCN
N2O
HC2CN
C5H
C5N
CH3NH2
CH2CHOH
CH3CCH
CH3CHO
CH2CHCN
c-CH2OCH2
c-CH2SCH2
HC6CN
(CH2OH)2
(CH3)2CO
CH3C4CN?
NH2CH2COOH?
HC8CN
c-C6H6
HC10CN
+ ISOTOPOMERS
Dust particles contain 1% of interstellar matter.
POTENTIAL ENERGY OF REACTION
activation energy
typical neutral reactions
radical-radical reactions
A+B
ion-molecule reactions
k(T) = A(T) exp(-E /kT)
a
C+ D
Cosmic rays produce
ions
Radical-Neutral Reactions
Radicals: C, CN, CCH
1) Inverse T dependence
2) Large rate coefficients by
10-50 K: k  10(-10) cm3 s-1
(diffusion)
FORMATION OF GASEOUS
WATER
H2 + COSMIC RAYS  H2+ + e
Elemental
abundances:
C,O,N
=
10(-4);
C<O
Elemental abundances: C,O,N = 10(-4); C<O
H2+ + H2  H3+ + H
H3+ + O  OH+ + H2
OHn+ + H2  OHn+1+ + H
H3O+ + e  H2O + H; OH + 2H, etc
FORMATION OF O2 ,N2 CO
OH + O  O2 + H
OH + N  NO + H
NO + N  N2 + O
CH + O  CO + H
CO, N2 + He+  C+, N+ +…
Precursor to ammonia, hydrocarbons
ORGANIC SYNTHESIS CONT.
SOME SYNTHETIC REAC TION CLASSES:
A. CARBON INSERTION
C+ + CH 4 -----> C2H3+ + H
------> C2H2+ + H2
B. CONDENSATION
C2H2+ + C2H2 -----> C4H3+ + H
C. ATOM IC INSERTION
N + C 3 H3 +
-----> HC3NH+ + H
D. RADIATIVE ASSOCIATION
CH3+ + H2O -----> CH3OH2+ + h
E. NEUTRAL-NEUTRAL
C + C2H2

C3 H + H
NEUTRAL-NEUTRAL RX (CONT)
CN + C2H2  HCCCN + H
CCH + C2H2  C4H2 + H
CCH + HCN  HCCCN + H
YES
YES
NO
O + CCH  CO + CH
k  1.2 10(-11) cm3 s-1
MAYBE (Ea = 250K?)
GAS-PHASE MODELS
A+ + B  C+ + D
k1
C+ + D  PRODUCTS
k2
d[C+]/dt = k1[A+][B] – k2[C+][D]
Constraints: initial concentrations, elemental
abundances, density, charge neutrality
Steady-state solution: d[C+]/dt = 0
exists for constant density but takes very long
(107 yr) to be achieved.
CURRENT GAS-PHASE MODEL NETWORKS
4,000 reactions; 10-20% "studied";
400 species through 13 atoms in size
elements: H, He, N, O, C, S, Si, Fe, Na, Mg, P, Cl
elemental abundances: “low metal”
photodestruction: external, internal (via cosmic rays)
Successes for quiescent cores:
(1)Reproduces 80% of abundances
including ions, radicals, isomers
(2)Predicts strong deuterium fractionation
CURRENT APPROACH TO
NEUTRAL-NEUTRAL RX
DO NOT EXTRAPOLATE NEW LOW
TEMPERATURE RESULTS UNLESS IN
FAMILIES (e.g. C + HCCCN NO)
 MAINTAIN PAST ESTIMATES UNLESS
CONSENSUS THAT THEY ARE INCORRECT.
(E.G. O + Cn, CnH) INCLUDES LOW RATE
CONSTANT.
 ESTIMATES IMPROVED WITH IAN; WORK IN
PROGRESS

IRC10216: An AGB (Old) Star
LTE
Molecules and
dust here
C>O
N,T similar to
cloud
CO, C2H2,
HCN
UV radiation
+ cosmic rays
Actual Distributions
GROWTH OF MOLECULES
Occurs via neutral and ionic (+ and -)
reactions. Modified network necessary to
account for acetylenic chemistry.
Photochemistry important in the
production of radicals such as CN
and CCH
C2H2 + h  CCH + H
GROWTH OF MOLECULES. II
CCH + C2nH2  C2n+2H2 + H
CN + C2nH2  HC2n+1N + H
C2nH reactions with hydrocarbons,
HCN(?), HNC(?) as well as
cyanoacetylenes.
Benzene formed via ion-molecule rx.
CYANOPOLYYNES in IRC
Radius 
CRL618: A Protoplanetary
Nebula
Detection of
benzene
empty
250 K
Dense
Thin shell
Photons, X-rays from central star!
100 x normal ionization rate
SUMMARY
Thanks to Ian Smith and others
(Bertrand Rowe, Ian Sims, David Clary
etc.), we now know that neutral-neutral
reactions are competitive in both
oxygen-rich and carbon-rich chemistries
in interstellar and circumstellar
sources!!!!!
SYNTHESIS OF BENZENE
C2H2+ + C2H2  C4H3+ + H
C4H3+ + C2H2  c-C6H5+ + h
c-C6H5+ + H2  c-C6H7+ + h
c-C6H7+ + e  c-C6H6 + H
INITIAL ABUNDANCES w.r.t. H2





CO
C2H2
HCN
CH4
NH3





6(-4)
5(-5)
8(-6)
2(-6)
2(-6)
ACTUAL CLOUD CORES
Model
TMC-1
L134N
NSM/+grains
80%
80%
NNM
50%
70%
NOTES: (1) C=0.42 x O
(2) N-N reactions involving C and O
most important.
(3) Larger molecules more strongly
affected.
TYPES OF SURFACE REACTIONS
REACTANTS: MAINLY MOBILE
ATOMS AND RADICALS
A +
B 
H +
AB
H  H2
association
X  XH (X = O, C, N, CO,
etc.)
WHICH CONVERTS
H +
O  OH  H2O
C  CH  CH2  CH3  CH4
N  NH  NH2  NH3
CO  HCO  H2CO  H3CO  CH3OH
X + Y  XY
??????????
H + HX  H2 + X abstraction
Related documents