Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
2014 “Towards an HIV Cure” symposium Melbourne Impact of HAART on HIV Reservoirs Pr Christine ROUZIOUX Virologie – Université Paris Descartes The objective of this presentation is to understand the extent of which ART can reduce and limit the establishment and the persistence of the HIV reservoirs, as an important step towards HIV cure. There is no consensus on the definition of HIV reservoirs There is no consensus on HIV reservoir markers However, there are many recent results which bring information that could help to design studies, to select patients as good candidates to receive the best combinations aiming at reducing HIV reservoirs and to achieve HIV drug free remission. Definition of HIV reservoirs Culture assay : IUPM Lewin & Rouzioux, AIDS 2011 Rouzioux & Richman, 2012 METHODS OBJECTIVE ADVANTAGES DRAWBACKS Cell viremia (IUPM) Measures cell capacity to produce infectious virus IUPM Gold Standard to identify productive and/or resting cells Long and heavy technique High amount of Fresh blood needed 180 ml Reproducibility unknown Integrated HIV-DNA To quantify integrated provirus in resting and productive infected cells Good Marker of Latency in sorted resting CD4+Tcells Frozen samples Labour intensive technique No standard method Reproducibility across multiple labs unknown 2 LTR circles unintegrated HIV-DNA Measures by product of HIV integration, marker of ongoing replication Marker of recent cycles of replication Frozen samples Reproducibility across multiple labs unknown Total HIV-DNA Measures unintegrated,, integrated, linear DNA and 2LTR circles, in blood and tissues Small amount of frozen whole blood, PBMC Standardized, simple reproducible, International Quality Controls Includes quantification of competent and incompetent virus Reproducibility across multiple labs unknown Cell-Associated US-RNA and MSRNA Marker of ongoing replication in productive cells Marker of HIV transcription marker for residual productive cells in patients on cART Few published studies Reproducibility across multiple labs unknown Plasma HIV-RNA Marker of viral production by infected cells Ultrasensitive method (Single Copy Assay) to quantify residual replication Universal well standardized method Feasible with all HIV subtypes with some Lewin assays Large volume of plasma needed Indirect marker of productive cells HIV-RNA (SCA) & Rouzioux, AIDS 2011 Comparative analysis of measures of viral reservoirs in HIV eradication studies: Erickson et al , Plos Path, 2013 r=0.70 p=0,008 r=0.65 p=0.016 r=0.58 p=0.015 r= 0.63 p=0.0042 Kinetics of HIV reservoir decrease Treatment Interruption Viral Rebound - Naïves Palmer S et al. J Internal Medicine 2011 Impact of Early HAART on HIV Reservoirs ADN-VIH (Log / M PBMC) 272 Chronic Infections 35 Primary- infections Better HIV-DNA decrease Better immune restoration Time with HIV-RNA <50 copies/ml (Years) Hocqueloux et al , JAC 2013 Impact of ART on Gut reservoirs Yukl S et al, AIDS 2010 The Distribution of HIV DNA and HIV RNA in Cell Subsets differs in Gut and Blood in patients on HAART. Intensification with raltegravir produced no consistent decrease in HIV-RNA and HIV-DNA in blood, duodenum, colon or rectum. Moreover, ileum support ongoing productive infection, even in patients with plasma HIV-RNA undetectable. Chege D et al AIDS 2012 In long term virologically suppressed patients on HAART, intensification with raltegravir did not result in further decay of HIV-DNA in either the blood or GUT after 48 and 96 weeks of therapy. Ananvoranitch J et al, Plos one 2012: Gut T cell depletion and HIV reservoir seeding increases with progression . HAART induced immune restoration and reduced reservoir size Kök A et al, Mucosal Immunology, 2014: Early initiation of HAART helps to preserve and /or restore mucosal gut homeostasis, and reduce the gut reservoirs HIV-DNA level. ANRS 147 OPTIPRIM : Study design Arm 1 (N=45): Primary end-point : HIV-DNA level at M24 Darunavir/R: 800/100 mg QD + Tenofovir/emtricitabine: 245/200 mg QD + Raltegravir: 400 mg BID + Maraviroc: 150 mg BID Treatment interruption 0 Arm 2 (N=45): Darunavir/R: 800/100 mg QD + Tenofovir/emtricitabine: 245/200 mg QD Co-enrollment: -Cohort CO6 PRIMO M24 M30 VISCONTI ? - Inclusion criteria : Patients with Acute HIV-1 infection < 10weeks Chéret et al , CROI 2014 ANRS 147 : OPTIPRIM trial : impact on reservoirs HIV-DNA kinetic from baseline to month 24 A B A. HIV-DNA log copies/ per 106 PBMC strong decrease and continious slope B. HIV-DNA log copies per ml of blood Could we do better? Chéret et al , CROI 2014 Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues Fletcher et al PNAS 2014 Probability to maintain HIV RNA <400 copies/ml after treatment interruption. : Immunovirological parameter evolution of the two post treatment controller patients A C (PTC 1 and 2). D Impact of 2 years of HAART in acute patients: OPTIPRIM ANRS147 p<0.009 p=0.001 p=0.001 p<0.004 p=0.001 D0 D0 p=0.001 p=0.001 p=0.001 p=0.002 Cell-associated HIV-1 DNA (Log copies/million cells) 6 5 4 3 2 1 D0 M24 PBMCs D0 M24 CD4 TLy M24 M24 Activated Resting CD4 TLy CD4 TLy D0 M24 TN D0 M24 TCM D0 M24 TTM D0 M24 TEM 13 Chéret et al CROI 2014 HIV blood reservoirs in T CD4+ subsets HAART at the Chronic Phase Chomont et al, Nat. Med 2009 HAART in Primary infection Chéret et al, 2014 : OPTIPRIM ANRS 147 Elite controllers - VISCONTI Patients Interactions between Activation/ Inflammation and HIV reservoir levels Jain et al JID, 2013 Interactions between Activation/ Inflammation and HIV reservoir levels Murray et al J Virol, 2014 Impact of early HAART Murray et al J Virol, 2014 2013 The VISCONTI study 06 08 107 106 105 1000 104 103 500 102 RNA copies/ml 108 1500 CD4+ T cells/mm3 109 2000 CD4+ T cells/mm3 0 99 00 01 02 03 04 05 06 07 08 09 Year 101 01 02 03 04 05 06 07 08 09 10 11 10 9 10 8 10 7 1500 10 6 10 5 1000 10 4 10 3 500 10 2 10 1 0 10 0 98 99 00 01 02 03 04 05 06 07 08 09 10 11 Year MWP 2000 2000 1500 1000 500 0 99 00 01 02 03 04 05 06 07 08 09 10 Year 10 9 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 10 0 CD4+ T cells/mm3 RNA copies/ml 500 OR8 OR2 0 1000 OCP 2000 1500 1000 500 0 02 03 04 05 06 07 08 09 10 Year LY1 2000 1500 1000 500 0 01 02 03 04 05 06 07 08 09 10 Year 10 9 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 10 0 10 9 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 10 0 RNA copies/ml 02 04 Year 1500 10 9 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 10 0 CD4+ T cells/mm3 00 CD4+ T cells/mm3 98 RNA copies/ml 96 CXK 2000 CD4+ T cells/mm3 0 10 9 10 8 10 7 1500 10 6 10 5 1000 10 4 10 3 500 10 2 10 1 0 10 0 01 02 03 04 05 06 07 08 09 10 11 Year 2000 RNA copies/ml 500 CD4+ T cells/mm3 1000 KPV RNA copies/ml CD4+ T cells/mm3 1500 109 108 107 106 105 104 103 102 101 100 10 RNA copies/ml OR1 2000 RNA copies/ml 14 patients with Remission 0 96 98 00 02 04 06 Year 08 10 500 0 CD4+ T cells/mm3 1000 RNA copies/ml CD4+ T cells/mm3 1500 10 9 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 10 0 99 00 01 02 03 04 05 06 07 08 09 10 11 12 Year 1000 500 0 02 03 04 05 06 07 08 09 10 Year LY2 CD4+ T cells/mm3 CD4+ T cells/mm3 RNA copies/ml 1500 10 9 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 10 0 2000 1500 1000 500 0 00 01 02 03 04 05 06 07 08 09 10 11 Year 10 9 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 10 0 SL2 MO1 2000 JOGA 2000 10 9 10 8 10 7 1500 10 6 10 5 1000 10 4 10 3 500 10 2 10 1 0 10 0 99 00 01 02 03 04 05 06 07 08 09 10 11 12 Year 2000 RNA copies/ml 500 CD4+ T cells/mm3 1000 10 9 10 8 10 7 1500 10 6 10 5 1000 10 4 10 3 500 10 2 10 1 0 10 0 98 99 00 01 02 03 04 05 06 07 08 09 10 Year 2000 RNA copies/ml CD4+ T cells/mm3 1500 109 108 107 106 105 104 103 102 101 12 RNA copies/ml GXR OR3 2000 RNA copies/ml Year Saez-Cirion et al Plos Pathogens 2013 6 HIV-DNA (log10 copies/106 PBMC) 5 4 3 2 1 PHI Chronic cART ALT HIC PTC Lewin and Rouzioux AIDS, 2011 Post-treatment controllers have low levels of HIV-1 DNA in PBMC, which further decreased after treatment interruption in some cases Cell associated HIV-1 DNA (Log copies/106 PBMC) 4 3 2 1 0 0 30 60 90 120 Time after treatment interruption (months) Saez-Cirion et al Plos Pathogens 2013 The VISCONTI patients, now ! (n=20) Médian (IQR) At PHI Before interruption After interruption CD4/mm3 544 915 855 Ratio CD4/CD8 0.70 1.51 1.48 Viral loads, Log cp/mL 5.2 <1.7 <1.7 Post-treatment interruption • Median Follow-up = 9.3 years (IQR: 8.4-10 – range: 4.5-12.5) • Median age = 48 (IQR: 43-53) No AIDS event Treatment resumption in 1/20 patient Cancer ORL VL <40 cp/mL before cART resumption In remission after 2 years No treatment resumption linked to viral replication 338 Viral loads measured after treatment interruption – 287/338 (85%) were <50 cp/mL – 45/338 (13%) were >50 et <400 cp/mL – 6/338 (2%) were >400 cp/mL CONCLUSIONS The study of HIV reservoirs in treated patients bring many new arguments in favor of early treatment initiation: Protecting long-life memory T cells Reducing the damage of activation/inflammation Inducing VISCONTI cases with long-term control after treatment interruption Pharmacological studies indicate that better combinations with better concentrations in lymphoïd tissues, including lymph nodes, might have a better impact on HIV reservoirs. Lastly, the impact of new drugs, new combinations should be systematically evaluated on HIV reservoirs, to prepare patients to the next objective to achieve long-term HIV drug free remission. Acknowledgements Patients and clinicians who participate in the study Institut Pasteur CHU Necker Enfants Malades Régulation des Infections Rétrovirales Laboratoire de Virologie Asier Saez-Cirion Christine Rouzioux Gianfranco Pancino Véronique Avettand-Fenoel Daniel Scott-Algara Adeline Mélard Françoise Barré-Sinoussi Pierre Versmisse Faculté de Médecine Paris Sud CHR Orléans La Source Service Maladies Infectieuses Thierry Prazuck Laurent Hocqueloux INSERM U1012 Alain Venet Olivier Lambotte Cécile Goujard Isabelle Girault Camille Lecuroux CHU Hôtel-Dieu Unité Immuno-Infectiologie Jean-Paul Viard INSERM U1018 Laurence Meyer Faroudy Boufassa ANRS CO6 “PRIMO” ANRS CO18 ANRS CO15 “HIV controllers” “ALT” CHU Pitié-Salpetriere INSERM UMR-S 945 Brigitte Autran Charline Bacchus Benjamin Descours Assia Samri Ioannis Theodorou Julien Guergnon INSERM UPMC U943 Dominique Costagliola Valérie Portard FHDH “French Hospital Database on HIV” Merci