Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Supplementary Figure S1. Flow cytometry analysis showing gating strategies for the sorting of live quiescent (GFP-negative) and replicating (GFP-positive) beta-cells, and evidence for beta-cell specificity of sorting. A. Beta-cells were gated using TSQ-staining of dissociated islet cells from CcnB1-GFP transgenic mice. B. Beta-cells were alternatively isolated by sorting Tomato-positive islet cells from Insulin-Cre;Rosa-LSL-Tomato, CcnB1-GFP transgenic mice. C. Beta-cell specificity: Tomato is exclusively expressed in Insulin-positive cells. Pancreatic sections from 1 month-old Insulin-Cre; Rosa-LSL-Tomato transgenic mice were immunostained for DsRed (Tomato) (red) and insulin (green) and nuclei were counterstained with DAPI (blue). Original magnification: 400. Tomato is expressed in the majority of insulin positive cells, and only in insulin-positive cells. D. GFP marks replicating beta-cells in pancreatic sections. Ccnb1-GFP transgenic mice were sacrificed 3h after BrdU injection and pancreatic sections were immunostained for BrdU (red), GFP (green) and Insulin (white), and nuclei were counterstained with DAPI (blue). Original magnification: 400. E. Heatmap showing the Euclidian distances between the different RNA-seq samples as calculated from the variance stabilizing transformation of the RNA-seq read counts (DESeq) (25). Supplementary Figure S2. Genes repressed in replicating beta-cells significantly overlap with genes upregulated in human beta-cell-line after excision of T-Ag and hTERT. Conversely, genes induced in replicating beta-cells are significantly correlated with genes downregulated in beta-cell-line after excision of T-Ag and hTERT. For each gene set (row) (genes activated or repressed upon cell cycle exit induced by T-Ag excision), the mean expression of the overlapping differentially expressed genes in each experiment (column) is shown, after logarithmic transformation and row centering. The overrepresentation significance (p-value) was computed using a statistical test based on hypergeometric distribution. Supplementary Figure S3. Most repressed genes in replicating cells are downregulated roughly two-fold (Log2 (fold change) =-1). Scatter plot showing Log2 (Fold change) of repressed genes (1245 genes) in replicating cells (Fold change was calculated by DESeq after count normalization). Supplementary Figure S4. Quantitative RT-PCR (qRT-PCR) analysis of the cell-cycle gene Top2A and selected beta-cell maturation genes in sorted beta-cells isolated from Ccnb1-GFP P7 pups. For each gene the mean expression value in GFP+ cells (n=3, FACS experiments) +/- standard error is presented relative to GFP- cells after normalization to beta-actin (Actb). * P<0.05 (t-test) Supplementary Table 1. Genes upregulated in replicating beta-cells, associated with RNA processing-GO category. Genes associated with the RNA splicing GO category are marked in bold. log2(FC) (log2 fold change). FDR (BH) (False detection rate, Benjamini-Hochberg). Supplementary Table 2. Genes encoding beta-cells ‘disallowed’ genes involved in glucose metabolism are expressed at very low levels and are not significantly differentially expressed in replicating cells. GFP- and GFP+ values are mean normalized counts (DESeq) for quiescent and replicating beta-cells, respectively. FDR (BH) (False detection rate, BenjaminiHochberg). Supplementary Table S3-1. Genes previously associated with cell cycle/proliferation, upregulated in replicating beta-cells Supplementary Table S3-2. Candidate Cancer genes with no documented function in cell-cycle, upregulated in replicating beta-cells Supplementary Table S3-3. Genes upregulated in replicating beta-cells, not associated with cancer or cell cycle/proliferation Supplementary Table 4. Cell-cycle and Proliferation-associated gene sets (MSigDB) BIOCARTA_G1_PATHWAY BIOCARTA_CELLCYCLE_PATHWAY CELL_CYCLE_ARREST_GO_0007050 CELL_CYCLE_CHECKPOINT_GO_0000075 CELL_CYCLE_GO_0007049 CELL_CYCLE_PHASE CENTROSOME_CYCLE DNA_DAMAGE_CHECKPOINT DNA_INTEGRITY_CHECKPOINT KEGG_CELL_CYCLE WHITFIELD_CELL_CYCLE_LITERATURE S_PHASE_OF_MITOTIC_CELL_CYCLE M_PHASE_OF_MITOTIC_CELL_CYCLE M_PHAS E MITOTIC_CELL_CYCLE_CHECKPOINT S_PHASE INTERPHASE_OF_MITOTIC_CELL_CYCLE INTERPHASE REACTOME_CELL_CYCLE REACTOME_CELL_CYCLE_CHECKPOINTS REACTOME_REGULATION_OF_MITOTIC_CELL_CYCLE WHITFIELD_CELL_CYCLE_G1_S WHITFIELD_CELL_CYCLE_G2 WHITFIELD_CELL_CYCLE_G2_M WHITFIELD_CELL_CYCLE_M_G1 WHITFIELD_CELL_CYCLE_S STEGMEIER_PRE-MITOTIC_CELL_CYCLE_REGULATORS BENPORATH_PROLIFERATION Supplementary Table 5. sm-RNA-FISH probe sequences Actb Hars Slc2a2 Glul Pax6 gcagcgatatcgtcatccat ttcggatgacttccggttac ttccggtgatcttgtcttct gaacttgctgaggtggccat actcacacaaccgttggata ggagccgttgtcgacgacca actgacggctgtctaaaacc agtgaagacagtgaaagcca cttgatgcctttgttcaagt cgtaatacctgcccagaatt cgaagccggctttgcacatg gacgctttctgctccttaag aactggaaggaactcagtac ggggcagggacatgtacatt ttggcttactccctccgatt acgatggaggggaatacagc ccttcagttttaggagtttc tgatcacaccgatgtcatag atggcttggactttctcacc tgcttacaacttctggagtc atcacaccctggtgcctagg ttgggggttttgagcacaaa gaacacccaaaacatgtcga tcttgcagcgcagtccttct tcccgtttatactgggctat gtccttctgacccattccca ggggactatagtctctcgtg tagttaatggcagctttccg ggctcacagtccagggtacg ttcccaagcaaagatggaag tgggcctcgtcacccacata acatcaaacaccttttcccg atgctggtgtgactgtaagt aggtaactcttccacacact cggataataatctgtctcgg ggtcaggatacctctcttgc gcgtttgaaacagcggatga tccttcagtctcctcttcat tagagccatcaaagttccac tgttatcgttggtacagacc catgttcaatggggtacttc ggtgtatcaatcacttctgc agcatagtgactatgtgagc gagccttcagactgaaaggt ggttgcgaagaactctgttt tcgtcccagttggtaacaat tcagtgtttcctttagttca aaagaatgaggcgaccattc atggaggtacatgtcgctgt atctgttgcttttcgctagc gtggtgccagatcttctcca ttgagtcttctccgtacttt tgatccttccaagtttgtcc ggtctcgaaacatggcaaca ttatcatacatgccgtctgc acacgcagctcattgtagaa aggtcataacggagggacag tcaatgagaggctgtttgca ttgttggggtctttgcggaa ctgcccgttcaacatcctta agcacagggtgctcctcagg ccagatagcgagcaaaaggg ttggaacatcccatcaagag gaaaacttcacatagcacca aagtcccgggataccaacca gttcaggggggcctcggtga agcgtttaatgttggtcagt acttcgtccagcaatgatga ctgcaggcttccggttatac tgttgctggcagccatcttg tcttttcacggttggcctta gcgatacacctttgctatat ttagcccacaatacagtcct cagatgtgcctcaagttggt tgatggagttggtgttctct gtctcaaacatgatctgggt tagaattcacggtaacggcc tgtacattggaaccagtcct caccatgtccattatccgtt tccgagtcttctccgttaga gtacatggctggggtgttga ccggcaatgtcaaaatcgca taagaatgcctgtgacaagg caaaccaggggtgctggttg ctgaagtcgcatctgagctt acagcacagcctggatggct aggaatcatggggtcgaact ataaagctgaggccagcaat agagtatattcctgctccat tttctttgcagcttccgctt gtacgaccagaggcatacag taatctttaggcactctgca tgtgccaatgatcctgattg tgggtggccgtctgttccca ctgctcttgggtaaaagatg tctccggagtccatcacaat aagtgaactcaggatctcgc ttctggacagaagagcagta agccattggaaggccaacca aaactctttctccagagcct tagatgggcacagtgtgggt aaacatcccatctaggatgc ctgacttcctcttccaactt gtctgctcccacaccgcagt acatctggataatgggtcct gtgagggagagcatagccct tgctatcaggaacaccacag cctcttagtctcttcaagct cgatgtccctgccgtaggcc tttggctgctagtctttccc ccaggtccagacgcaggatg gaggagcagatggtacggaa cgatgcctcttccttttctt caggcccggtagtgagcctc ttcttgcttcaggtagatct aggtagtctgtcaggtcccg gaaaccttgtctagcttgtc taattggcatccgtgaagag gatcttgactccagcataca cgattagaaaaccatacctg acgctcggtcaggatcttca accatgctgctggacatagt ttgattcctgagaactgctg taacctccgcatttgtcccc tcttctcttctccatttggc ctgtggtggtgaagctgtag actgctccaccagagaaacc gctgtctgaaaaatgctggt tggaattcccactgggcagg tcttctctggttcctcagtt atgtcacgcacgatttccct gagagtttaggatcctgcag aatggttgcatacacaggct tccaaagatgatctcccatt atgtgactaggagtgttgct caacatagcacagcttctct ctctacagcctgtttgtttt tgaagatcatgttgatggcc cgatgcaagataaaacgggc tactgaagctgctgctgata atctcctgctcgaagtctag caaagagcagctttaggtct aatcatcccggttaggaaca caccccaaagtcttcgcaca gggattggctggtagacact aggaagaggatgcggcagtg gtcatcaatgccaaacagga gacatgaagatggtgcagaa gcttggggtcaaaggttgct atgtgaaggaggagacaggt agctcatagctcttctccag caaggctcaggtcaaaggag tttatccagcagcacaagtc ccattccagttccctggaat tgttcggcccaacatggaac agtgatgacctggccgtcag tggcatctgtagcagcactg atgctcacgtaactcatcca gaagttggtatggcagcctg aaagcactgtacgtgttggt atcggaaccgctcgttgcca ttggggtcaaacatgccaac tgacaaagaggaagatggca cctcccgcatggccttggtg ttgtttgccatggtgaagct aaggctggaaaagagcctca aatactgagcccaacgcatg aaccatgaaccaagggattg tcaatgcacttcagaccatt agtatgaggaggtctgactg caggattccatacccaagaa aatggaaaagatccgctcca ggtccttggctgaaaaattc gctcagtttgtcaatggcct atcataactccgcccattca gaatgtagtttcatggatgc tgaagcctctaatctttgct aaattgcagacccagttgct ggatgtggtactggtgcctc tcatgtgtgtttgcatgtgc cgtcacacttcatgatggaa ttctgtgcagatgccacaag aagtccgcaatgtactggaa ccccccttgggatcgtaggc atgagtcctgttgaagtggt tagaggtctttacggatgtc actctgagacaagcttcagt aagaggaagaacacgtaagg cagacgccgggcgttgtcca aacttggacgggaactgaca accagacagcactgtgttgg aacttcgggttcttcttgta tgtaaacagggtgaagacca tggaggtttcgtggaatcca agacatgtcaggttcactcc tcagcaatgcctgggtacat cacagtactgcaactggttt gactttcctttggtttctgg ccggcagaaaagtcgttgat actgtaatcgaggccagtac agtaatctccttctgcatcc tcttctcttcggacatccac attctgcagcgatttcctca actggcaccgcggttggcaa cttggttaaagtcttctgcc atcttcatggtgctaggagc tggagaggggctgatttgtt tttgtacagcagctttgcgt cgacagtccggggaatgcgg agatctcacacatctgctca ctcaggaggagcaatgatct tactggtttgctcagctcag aagctggacacagacagaga aagtagcccttcttctcctg gatatacgtccacttctaga cgatccacacagagtacttg ttaagatcaatcctgtttcc agttggtgaagagtacccag ggcagaaggccgacggtctt aatacggggctctgagaact SUPPLEMENTARY DATA ac agt gaggeea ggatggag atgc agttttgttttcgttc c aca gcagata ggcc aagta tc accgc ata ggggtcac aa t gact gttct gcat gctgga at ccac atctgctggaaggt t gctggat ggc aaat atgca t atctttggtgac atcctc a cacgtgeggaegatggcttc aagacaccaccaa gctgatt actcatc atactcctactt a ttttaccaataattact aat ttctcc acaaacaacacaaa at cacct attic altaaaaa aactaactct acaatcttct aa gcacttgc ggt gcacgat ctataatcccc gac agt gta ctctgaagacgcc aggaatt agttcttgtattggaagggt a gaattcgggaaat gtcgc a ©2016 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-0003/-/DC1