Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Molecular Dynamics Simulations of a Ten-Amino Acid Protein Athanasia P. Serafeim and Nicholas M. Glykos Democritus University of Thrace, Health Sciences School, Department of Molecular Biology and Genetics Introduction 1234567916FF679ED1 E5D1.EFD1C6DD7D1.DE8DD71E5D1BD16DFC31*9DC1B71E561 6,D1 6E1 9%%D91 E59E1 ??.@6FC71 97C1 ??.6FC71 9D1 E5D1 BE1 66F91 9B7,1 9FF1 %9631AB8D=D1E5DDA191FD91C6E67E6B71D,9C67,1E5D1DFE67,1ED%D9ED1B1E5D1 79E6=D1EED1.D67,1FB8D1671E5D19D1B1??.@6FC731 Mini-proteins play an important role in the study of protein folding. The well-defined 3D structure and two-state folding along with their small size qualify mini-proteins as ideal to be studied using molecular dynamics simulations. In this study we simulate the folding of CLN025, a synthetic molecule with the sequence YYDPETGTWY that forms a beta hairpin as determined by X-ray crystallography and NMR analyses[1]. With this work we aim to examine the agreement between the available experimentally produced structures and the molecular dynamics structures and to validate the force fields used in the simulations through this comparison. .D1 ??.6FC771 61 E5D1 BD1 6DFC1 E59E1 %BDD1 E5D1 BE1 C6DD7D1 B1 E5D1 BE5D1 E8B31 1 <6EF81 6E1 B7E9671 91 FD1 2BDE1 EED1 E5971 ??.@6FC71 97C1 ??.6FC71 86E51 ??.@6FC71 .D67,1 E5D1 B7D1 E59E1 67FCD1 E5D1 .6,,DE1 FED1 B1 2 BDE1 B7B9E6B7317BE5D1 6,76697E1 C6DD7D1 61 E59E1 671 E5D1 9D1 B1 ??.@ 6FC71 97C1 ??.6FC71 E5DDA1 91 D,6B71 B1 56,51 >1 =9FD1 671 E5D1 FED1 B1 79E6=D1 EED1E59E1E5D1??.6FC7711F913 Methods Molecular dynamics simulations were performed with the parallel molecular dynamics code, NAMD[2] and the use of three force fields of the Amber family: ff99sb-ildn, ff99sb-ildn-nmr, ff99sb*-ildn. Results <6,D1;19.FD1B1BD16DFC1B%96B71C6%F9867,1E5D1C6DD7D1.DE8DD71D9511%961B1BD1 6DFC3 Conclusions & Future Work B1 B7FCD1 8D1 59=D1 CDB7E9EDC1 E59E1 DF9E6=DF81 67B1 597,D1 671 91 BD1 6DFC1 971FD9C1EB16,76697E1597,D1671E5D1%DC6EDC1BFC67,1.D59=6B1B1E5618DFFEC6DC1 %D%E6CD315D19=96F9.6F6E81B1D6ED76=D1D6%D6D7E9F1C9E91B1E5618ED15BFC19FFB81 1 EB1 B%9D1 97C1 =9F6C9ED1 E5D1 E5DD1 BD1 6DFC1 9,967E1 E5D1 981 D6%D6D7E9F1 !967F819:)$1C9E931A9=67,196C1E59E197C1.9DC1B71E5D1DFE15B871671<6,316E1 9%%D91E59E1D=D719E1E561D9F81E9,D1B1E5D1979F861E5D1??4*4)B5491=9697E1 %B6.F81 BE%DB1 E5D1 BE5D1 E8B1 =9697E1 .BE51 86E51 D%DE1 EB1 E5D1 %DC6EDC1 E5DBC87961 E9.6F6E81 B1E5D1 BFCDC1 E9ED1!FD1 B=DE9.6F629E6B71 B1 E5D1 %D%E6CDA1 79E6=D1E9ED$197C1E5D19,DDD7E186E51E5D179E6=DE9ED1EED1!56,5D1C=9FD$31 Figure 1: Amber ff99db*-ildn: Diagram presenting the similarity between the simulation and the experimental structure (q) in a temperature range of 280K to 530K (T). Characteristic structures are shown. 123456781D=D19197167C69EB1B1E5D1,D7D9F1DFE1%BCDC1.81D9516F9E6B731 5D1 6F9E6B71 D%D9EDCF81 =66E1 E8B1 DE9671 E9.FD1 EED1 E5D1 79E6=D1 EED1 97C1 91 B1 B1 E5D1 .DE91 596%671 86E51 91 B7D1 D6CD1 BDE1 .DE8DD71 E5D1 .DE91 E97C31 5D1 6E1 FED1 B1 B7B9E6B71 971 .D1 DD71 671 E5D1 .BEEB1 6,5E1 >9C97E1 B1 E5D1 C69,91 97C1 BD%B7C1 EB1 56,51 >1 =9FD1 97C1 FB81 EB1 DC61 ED%D9ED31 5D1 BDE1 EED1 B%81 91 9FF1 9D91 671 1 E5D1 >9C97E1 EB1 E5D1 FDE1 97C1 9D1 599ED62DC1.81DC6166F96E81EB1E5D1D6%D6D7E9F19:)1EED315D1EB%1FDE1 >9C97E1 B%6D1 BFDF81 B1 E5D1 7BFCDC1 EED1 E59E1 E5D1 6F9E6B71 ,BD1 E5B,531 1 7BED8BE581 9D91 61 E5D1 B7D1 E59E1 F6D1 .DE8DD71 E5D1 2BDE1 97C1 79E6=D1 EED185DD1%E9E6=D1E976E6B71E9ED1,9E5D19B7C1919CCFD1%B67E3 1 References 1 2314567891AB7C91DE19F318E9F14EED1B191D767B16C1BED67131315D314B3112 1!"#$1 %%12& '(2& 2 31 9D1 31 56FF6%1 )BD981 *971 +D61 +97,1 9D1 -.9E1 /9C1 9015B56C1 /F629.DE51 36FF91 56EB%5D1 56%BE1 )B.DE1 431 41DDF1 5966197E1 79FD1 97C1 7F91 45FED731 49F9.FD1 BFDF91 C87961 86E519:431B79F1B1B%E9E6B79F15D6E81#;2'221&