Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Random Variables By: www.entcengg.com 1 Random Variables An assignment of a value (number) to every possible outcome. Mathematically: A function from the sample space Ω to the real numbers. − discrete or continuous values. Can have several random variables defined on the same sample space. Notation: − random variable X − Numerical value x 2 Probability Mass Function (PMF): Discrete R.V. Probability distribution of X Notation: p x P X x X Properties: p x 0 X p x 1 x 3 X Probability Density Function (PDF): Continuous R.V. A continues r.v. is described by a probability density function fX Pa X b f x dx b a Properties: X f x dx 1 X f x 0 X Interpretation: P x X x f x dx f x x x 4 X X Expectation: Discrete R.V. Definition: E X xp x x X Interpretation: − Center of gravity of PMF − Average in large number of repetitions of the experiment Example: Uniform on 0,1, 2,…, n. Find E(X) 5 Properties of Expectation Let X be the r.v. and let Y = g(X) - Hard : EY yp y y Y - Easy : EY g ( x) p x x Caution: In general, Eg ( X ) g E X X Properties: If α and β are constants, then: 1) E 2) EX 3) EX 6 Variance: Discrete R.V. Recall: Eg X g ( x) p x X x Second Moment: Eg X 2 x p x 2 Variance: var( X ) E X E X X x 2 var( X ) X E X p x 2 X x var( X ) E X E X 2 2 www.entcengg.com Properties: 1)var( X ) 0 2)var(X ) var( X ) 2 7 Mean and Variance: Continuous R.V. E X xf x dx X Eg X g x f x dx var( X ) ( x E X ) f x dx 2 X 2 X Example: Continuous Uniform r.v. uniform a x b f x otherwise 0 X 1) for a x b, f x 2) E X 3) var X 8 X X Cumulative Distribution Function (CDF) Discrete r.v. F x P X x p x X kx X Continuous r.v. F x P X x f x dx x X dF x f x dx X X Example: 9 X Mixed Distributions 10 Gaussian (Normal) PDF 1 Standard Normal: N 0,1 f x e 2 x2 2 X Bell shaped curve: Expectation and variance: 1) E X 2) var X www.entcengg.com General Normal: 1 N , f x e 2 X 2 x 2 2 2 1 e 2 Expectation and variance: 1) E X 2) var X 11 x 2 2 2