Download Exo-planets Direct Imaging

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
AO4ELT3 CONFERENCE. FLORENCE, ITALY, 26-31 MAY 2013
E-ELT’s View
of Stellar Environments
Gaël Chauvin
- IPAG/CNRS Institute of Planetology
& Astrophysics of Grenoble/France
In Collaboration with ESO-PST,
and E-ELT CAM, IFU, MIDIR, MOS, HIRES & PCS consortium
Outline
E-ELT’s View of Stellar Environments
I- The E-ELT project
• Telescope, Discovery Window, Other Projects
• Instrumentation Road Map
II- Stellar Environments
• Disks
• Exoplanets
• Evolved Stars
The E-ELT Project
The Telescope
• 40-m class telescope: largest opticalinfrared telescope in the world.
(GMT = 25m; TMT = 30m)
• Segmented primary mirror.
• Adaptive optics assisted telescope.
• Diffraction limited performance:
12mas@K-band
Wide field of view: 7arcmin.
• Mid-latitude site (Amazones/Chile).
Fast instrument changes.
VLT level of operations efficiency.
The E-ELT Project
E-ELT & other competitive projects
Discoveries by opening a new parameter space
• Increased Sensitivity
• Spatial resolution (10 mas scale)
2 µm
50m2
50mas
400m2
18mas
600m2
14mas
1200m2
10mas
(JWST: 25m2)
(JWST: 68mas)
The E-ELT Project
Timeline: current/future missions
2012
2014
2016
2018
2020
2022
2024
Ground: Harps N/S, SOPHIE, NaCo, VISIR, CRIRES, WASP…
Space: Spitzer, Herschel, Kepler, CoRoT
- VLT & VLTI 2nd & 3rd generation
PRIMA, K-MOS, SPHERE, MUSE, ESPRESSO, GRAVITY…
- ALMA (ACA)
- GAIA
- Cheops
- TESS
- SKA
- JWST
- EChO/PLATO/FINESS?
- TMT
- GMT
- E-ELT
2026
2028
The E-ELT Project
Instrument Roadmap
Instruments
- First Light
AO
Mode
λ (µm)
Resolution
FoV / Sampling
Add. Mode
E-CAM
– 2023
SCAO,
MCAO
- IMG
- MRS
0.8 – 2.4
BB, NB
3000
53.0” / 3 mas
Astrometry 40mas
Coronography
E-IFU
– 2023
SCAO,
LTAO
- IFU
0.5 – 2.4
4000
10 000
20 000
0.5×1.0” / 4mas
5.0×10.0” / 40mas
Coronography
E-MIDIR
– 2024/2028
SCAO,
LTAO
- IMG
- MRS
- IFU
3 – 13
3 - 13
3-5
BB, NB
5000
100 000
18” / 12 mas
Coronography
Polarimetry
SCAO
- HRS
0.37 – 0.71
0.84 – 2.50
200 000
120 000
0.82”
0.027”×0.5”
Polarimetry
MOAO
Slits
IFUs
IFUs
0.37 – 1.4
0.37 – 1.4
0.8 – 2.45
300- 2500
5000 – 30 000
4000 – 10 000
6.8” / 0.1”
420’ / 0.3”
2” / 40mas
Multiplex ~ 400
Multiplex ~100
Multiplex ~10
Imaging?
EPOL
IFS
0.6 – 0.9
0.95 – 1.65
125 – 20 000
2.0” / 2.3 mas
0.8“ / 1.5 mas
Coronography
Polarimetry
E-HIRES
- 2024/2028
E-MOS
- 2024/2028
E-PCS
- 2027/2030
XAO
0.4”×1.5” / 4 mas
The E-ELT Project
Instrument Roadmap
• 1st Light Instruments
Instruments
- First Light
AO
Mode
λ (µm)
Resolution
FoV / Sampling
Add. Mode
E-CAM
– 2023
SCAO,
MCAO
- IMG
- MRS
0.8 – 2.4
BB, NB
3000
53.0” / 3 mas
Astrometry 40mas
Coronography
E-IFU
– 2023
SCAO,
LTAO
- IFU
0.5 – 2.4
4000
10 000
20 000
0.5×1.0” / 4mas
5.0×10.0” / 40mas
Coronography
E-MIDIR
– 2024/2028
SCAO,
LTAO
- IMG
- MRS
- IFU
3 – 13
3 - 13
3-5
BB, NB
5000
100 000
18” / 12 mas
Coronography
Polarimetry
SCAO
- HRS
0.37 – 0.71
0.84 – 2.50
200 000
120 000
0.82”
0.027”×0.5”
Polarimetry
MOAO
Slits
IFUs
IFUs
0.37 – 1.4
0.37 – 1.4
0.8 – 2.45
300- 2500
5000 – 30 000
4000 – 10 000
6.8” / 0.1”
420’ / 0.3”
2” / 40mas
Multiplex ~ 400
Multiplex ~100
Multiplex ~10
Imaging?
EPOL
IFS
0.6 – 0.9
0.95 – 1.65
125 – 20 000
2.0” / 2.3 mas
0.8“ / 1.5 mas
Coronography
Polarimetry
E-HIRES
- 2024/2028
E-MOS
- 2024/2028
E-PCS
- 2027/2030
XAO
SCAO: single-conjugated AO
MCAO: Multi-Conjugated-AO
MOAO: Multi-Object AO
XAO: Extreme-AO
0.4”×1.5” / 4 mas
LTAO: Laser-Tomographic AO
The E-ELT Project
•
2nd
Instrument Roadmap
Pool Instruments
Instruments
- First Light
AO
Mode
λ (µm)
Resolution
FoV / Sampling
Add. Mode
E-CAM
– 2023
SCAO,
MCAO
- IMG
- MRS
0.8 – 2.4
BB, NB
3000
53.0” / 3 mas
Astrometry 40mas
Coronography
E-IFU
– 2023
SCAO,
LTAO
- IFU
0.5 – 2.4
4000
10 000
20 000
0.5×1.0” / 4mas
5.0×10.0” / 40mas
Coronography
E-MIDIR
– 2024/2028
SCAO,
LTAO
- IMG
- MRS
- IFU
3 – 13
3 - 13
3-5
BB, NB
5000
100 000
18” / 12 mas
Coronography
Polarimetry
SCAO
- HRS
0.37 – 0.71
0.84 – 2.50
200 000
120 000
0.82”
0.027”×0.5”
Polarimetry
MOAO
Slits
IFUs
IFUs
0.37 – 1.4
0.37 – 1.4
0.8 – 2.45
300- 2500
5000 – 30 000
4000 – 10 000
6.8” / 0.1”
420’ / 0.3”
2” / 40mas
Multiplex ~ 400
Multiplex ~100
Multiplex ~10
Imaging?
EPOL
IFS
0.6 – 0.9
0.95 – 1.65
125 – 20 000
2.0” / 2.3 mas
0.8“ / 1.5 mas
Coronography
Polarimetry
E-HIRES
- 2024/2028
E-MOS
- 2024/2028
E-PCS
- 2027/2030
XAO
SCAO: single-conjugated AO
MCAO: Multi-Conjugated-AO
MOAO: Multi-Object AO
XAO: Extreme-AO
0.4”×1.5” / 4 mas
LTAO: Laser-Tomographic AO
The E-ELT Project
Instrument Roadmap
• XAO Instrument
Instruments
- First Light
AO
Mode
λ (µm)
Resolution
FoV / Sampling
Add. Mode
E-CAM
– 2023
SCAO,
MCAO
- IMG
- MRS
0.8 – 2.4
BB, NB
3000
53.0” / 3 mas
Astrometry 40mas
Coronography
E-IFU
– 2023
SCAO,
LTAO
- IFU
0.5 – 2.4
4000
10 000
20 000
0.5×1.0” / 4mas
5.0×10.0” / 40mas
Coronography
E-MIDIR
– 2024/2028
SCAO,
LTAO
- IMG
- MRS
- IFU
3 – 13
3 - 13
3-5
BB, NB
5000
100 000
18” / 12 mas
Coronography
Polarimetry
SCAO
- HRS
0.37 – 0.71
0.84 – 2.50
200 000
120 000
0.82”
0.027”×0.5”
Polarimetry
MOAO
Slits
IFUs
IFUs
0.37 – 1.4
0.37 – 1.4
0.8 – 2.45
300- 2500
5000 – 30 000
4000 – 10 000
6.8” / 0.1”
420’ / 0.3”
2” / 40mas
Multiplex ~ 400
Multiplex ~100
Multiplex ~10
Imaging?
EPOL
IFS
0.6 – 0.9
0.95 – 1.65
125 – 20 000
2.0” / 2.3 mas
0.8“ / 1.5 mas
Coronography
Polarimetry
E-HIRES
- 2024/2028
E-MOS
- 2024/2028
E-PCS
- 2027/2030
XAO
SCAO: single-conjugated AO
MCAO: Multi-Conjugated-AO
MOAO: Multi-Object AO
XAO: Extreme-AO
0.4”×1.5” / 4 mas
LTAO: Laser-Tomographic AO
The E-ELT Project
Instrument Roadmap
• Various AO Flavors
Instruments
- First Light
AO
Mode
λ (µm)
Resolution
FoV / Sampling
Add. Mode
E-CAM
– 2023
SCAO,
MCAO
- IMG
- MRS
0.8 – 2.4
BB, NB
3000
53.0” / 3 mas
Astrometry 40mas
Coronography
E-IFU
– 2023
SCAO,
LTAO
- IFU
0.5 – 2.4
4000
10 000
20 000
0.5×1.0” / 4mas
5.0×10.0” / 40mas
Coronography
E-MIDIR
– 2024/2028
SCAO,
LTAO
- IMG
- MRS
- IFU
3 – 13
3 - 13
3-5
BB, NB
5000
100 000
18” / 12 mas
Coronography
Polarimetry
SCAO
- HRS
0.37 – 0.71
0.84 – 2.50
200 000
120 000
0.82”
0.027”×0.5”
Polarimetry
MOAO
Slits
IFUs
IFUs
0.37 – 1.4
0.37 – 1.4
0.8 – 2.45
300- 2500
5000 – 30 000
4000 – 10 000
6.8” / 0.1”
420’ / 0.3”
2” / 40mas
Multiplex ~ 400
Multiplex ~100
Multiplex ~10
Imaging?
EPOL
IFS
0.6 – 0.9
0.95 – 1.65
125 – 20 000
2.0” / 2.3 mas
0.8“ / 1.5 mas
Coronography
Polarimetry
E-HIRES
- 2024/2028
E-MOS
- 2024/2028
E-PCS
- 2027/2030
XAO
SCAO: single-conjugated AO
MCAO: Multi-Conjugated-AO
MOAO: Multi-Object AO
XAO: Extreme-AO
0.4”×1.5” / 4 mas
LTAO: Laser-Tomographic AO
The E-ELT Project
• Science Priority / Stellar Environments
Instrument Roadmap
Instruments
- First Light
AO
Mode
λ (µm)
Resolution
FoV / Sampling
Add. Mode
E-CAM
– 2023
SCAO,
MCAO
- IMG
- MRS
0.8 – 2.4
BB, NB
3000
53.0” / 3 mas
Astrometry 40mas
Coronography
E-IFU
– 2023
SCAO,
LTAO
- IFU
0.5 – 2.4
4000
10 000
20 000
0.5×1.0” / 4mas
5.0×10.0” / 40mas
Coronography
E-MIDIR
– 2024/2028
SCAO,
LTAO
- IMG
- MRS
- IFU
3 – 13
3 - 13
3-5
BB, NB
5000
100 000
18” / 12 mas
Coronography
Polarimetry
SCAO
- HRS
0.37 – 0.71
0.84 – 2.50
200 000
120 000
0.82”
0.027”×0.5”
Polarimetry
MOAO
Slits
IFUs
IFUs
0.37 – 1.4
0.37 – 1.4
0.8 – 2.45
300- 2500
5000 – 30 000
4000 – 10 000
6.8” / 0.1”
420’ / 0.3”
2” / 40mas
Multiplex ~ 400
Multiplex ~100
Multiplex ~10
Imaging?
EPOL
IFS
0.6 – 0.9
0.95 – 1.65
125 – 20 000
2.0” / 2.3 mas
0.8“ / 1.5 mas
Coronography
Polarimetry
E-HIRES
- 2024/2028
E-MOS
- 2024/2028
E-PCS
- 2027/2030
Low
XAO
Medium
0.4”×1.5” / 4 mas
High
Outline
E-ELT’s View of Stellar Environments
I- The E-ELT project
• Telescope, Discovery Window, Other Projects
• Instrumentation Road Map
II- Stellar Environments
• Disks
• Exoplanets
• Evolved Stars
Stellar Environments
1/ Circumstellar Disks
Artist’s View ESO-PR-0942
1/ Disks
Key Scientific Questions
. Star/disk Evolution
o Accretion, photo-evaporation,
o Jets & Winds
o Magnetic Fields
. Disk Structure & Dynamics (Gas & Dust)
. Chemistry: Water & Organics
in Planet-Forming Zones
. Planetary Formation
o Initial conditions
. Planets/Disk interactions
Fomalhaut ALMA/HST
Bowler et al. 12
1/ Disks
Probing Planet-forming Regions
snow line
1 Lsun
@100 pc
Distance
Temperature
Time
E-ELT :
10 mas x 100pc
0.01
3000
0.4 days
0.1
1000
2 weeks
1.0
300
1 yr
10.0
100
30 yr
E-MIDIR
100.0
30
1000 yr
[AU]
[K]
VLT/CRIRES
1/ Disks
Star – disk interactions
Co-rotation radius
Magnetospheric radius
dust sublimation
1 Lsun
@100 pc
Distance
Temperature
Time
snow line
crystallization
0.01
3000
0.4 days
E-ELT :
10 mas x 0.01 x 100pc
0.1
1000
2 weeks
1.0
300
1 yr
Spectro-astrometry
10.0
100
30 yr
E-MIDIR
100.0
30
1000 yr
[AU]
[K]
VLT/CRIRES
E-IFU, E-HIRES & E-MIDIR
1/ Disks
Star – disk interactions
Star/Disk evolution under the microscope…
•
•
•
•
Geometry of Accretion Channels
E-ELT : 10 mas x 0.01 x 100pc
Inner Disk Properties (Warp, asymmetries…)
= 0.01 AU
Role of Magnetic Fields (Config., Reconnection)
= 2 Ro
Jet Launching Zone,
MHD star – disk simulations
Stellar & Disk Winds
R/Ro
Zanni & Ferreira 09
1/ Disks
Gas Dynamics in planet-forming zones
Proto-planetary disk of SR21 (Ophiucus, 160pc, 1 Myr)
Gap at 18 AU (sub-mm continuum emission Brown e al. 07)
• E-ELT-MIDIR simulations of 12CO line emission at 4.7µm of SR21.
o Left: Continuum subtracted and velocity channel co-added
o Right: Velocity map with a resolving power of 100 000 (3 km/s)
E-MIDIR
32 AU
1/ Disks
Gas Dynamics in planet-forming zones
Water & Organics
E-MIDIR
• Distribution and Dynamics
• Disk cooling & Planetesimals formation
• Organic/Prebiotic chemistry
(CH4, C2H2, HCN…)
• Isotopic Fractionation
• Transfer to Terrestrial Planets
. Keck-NIRSPEC
. high HRS (R = 25 000) in L-band.
. Detection of H20 and OH radicals MIR lines
. Hot (800K) water from the inner AUs
DR Tau, AS 205 N; Salyk et al. 08
1/ Disks
Observing the Dusty Disk Structures
Asymmetries/Spirals in proto-planetary disks
E-MIDIR
• E-MIDIR simulations of high-contrast imaging at 10 µm.
• Jupiter footprint at 20 AU (@100pc) from G-star,
• Gap detection at a few mJy/as2
at 0.1-0.2” (10 – 20 AU)
• ELT-MIR very competitive with
JWST
1/ Disks
Observing the Dusty Disk Structures
Asymmetries/Spirals in proto-planetary disks
E-MIDIR
• E-MIDIR simulations of high-contrast imaging at 10 µm.
• Jupiter footprint at 20 AU (@100pc) from G-star,
• Gap detection at a few mJy/as2
at 0.1-0.2” (10 – 20 AU)
• ELT-MIR very competitive with
JWST
1/ Disks
Observing the Dusty Disk Structures
Asymmetries/Spirals in proto-planetary disks
E-MIDIR
• E-MIDIR simulations of high-contrast imaging at 10 µm.
• Jupiter footprint at 20 AU (@100pc) from G-star,
• Gap detection at a few mJy/as2
at 0.1-0.2” (10 – 20 AU)
• ELT-MIR very competitive with
JWST
1/ Disks
Observing the Dusty Disk Structures
Asymmetries/Spirals in proto-planetary disks
E-MIDIR
• E-MIDIR simulations of high-contrast imaging at 10 µm.
• Jupiter footprint at 20 AU (@100pc) from G-star,
• Gap detection at a few mJy/as2
at 0.1-0.2” (10 – 20 AU)
• ELT-MIR very competitive with
JWST
Stellar Environments
2/ Exoplanets
Artist’s View ESO-PR-1106
2/ Exoplanets
Key Scientific Questions
. Architecture of Exoplanetary Systems?
. Formation & Evolution Processes
. How does it depend on the Host properties?
(Mass, Age, Composition…)
. How frequent are the Telluric planets in the HZ?
. Physics & Atmosphere of Exoplanets?
(Telluric & Giant)
. Bio-Signatures Discovery & Conditions favorable for Life?
2/ Exoplanets
Exploration of Telluric Planets
Expected planet population detected by Doppler spectroscopy with:
o HARPS on the ESO 3.6-metre (precision 1 ms−1),
Observed (Mayor et al. 11)
corrected
observed
Predicted (Mordasini et al. 09)
2/ Exoplanets
E-HIRES
Exploration of Telluric Planets
Expected planet population detected by Doppler spectroscopy with:
o HARPS on the ESO 3.6-metre (precision 1 ms−1; left),
o ESPRESSO on the VLT(precision 10 cms−1; middle)
o and HIRES on the E-ELT(precision 1 cms−1; right).
> HIRES, required to detect Earth-like planets in HZ of solar-type stars
E-HIRES
2/ Exoplanets
Twin Earth Discovery
• Simulations: 1.8 MEarth Exo-Earth in HZ (P=145 days)
around a bright and low-activity K1V star.
• RV precision: 2cm/s. Limitations: instr. noise, stellar oscillations,
granulation and activity.
• Detailed observing strategy:
3 meas./night, every 3 nights over 8 months
• Periodogram: 3σ detection (red)
E-HIRES, E-MIDIR, E-PCS
2/ Exoplanets
Planetary Atmospheres
• Reflected, Transmitted or Emitted light of Exoplanets
• Strongly or non-strongly irradiated planets
• Physics of Planetary Atmospheres (Giant, Exo-Neptunes to Super-Earths)
- Geometric Albedos
Knutson et al. 09
- Chemical Composition
(H20, CH4, CO, CO2, NH3…)
- Atmosphere’s Dynamics
. Inversion,
. Vertical Mixing,
. Circulation,
. Evaporation,
• Imprints of Formation
Mechanisms?
No Thermal Inversion
Thermal inversion
Spitzer
2/ Exoplanets
E-IFU, E-MIDIR, E-PCS
Imaging Planetary Systems
Physics of Giant Planets (down to Super-Earths)
• Observables: Luminosity, Teff & Gravity
• Atmospheric properties
• Orbital properties: a, e, i,
• Complementarity RV, Astr…
> Access Dynamical Mass
Bpic; Lagrange et al. 10
HR8799; Marois et al. 10
2/ Exoplanets
E-IFU, E-MIDIR, E-PCS
Imaging Planetary Systems
Physics of Giant Planets (down to Super-Earths)
• Observables: Luminosity, Teff & Gravity
• Atmospheric properties
• Orbital properties: a, e, i,
• Complementarity RV, Astr…
> Access Dynamical Mass
SPHERE
E-IFU/MIDIR
GAIA
Mesa et al. 11
Kasper et al. 10
Lattanzi & Sozzetti 10
E-PCS
2/ Exoplanets
E-IFU, E-MIDIR, E-PCS
Imaging Planetary Systems
Physics of Giant Planets (down to Super-Earths)
• Observables: Luminosity, Teff & Gravity
• Atmospheric properties
• Orbital properties: a, e, i,
• Complementarity RV, Astr…
> Access Dynamical Mass
Mordasini et al. 12
No Accretion Shock
Formation/Evolution Theories
• L – Mass Relation
• Gas Accretion Phase
Accretion Shock
2/ Exoplanets
E-IFU, E-MIDIR, E-PCS
Imaging Planetary Systems
Physics of Giant Planets (down to Super-Earths)
• Observables: Luminosity, Teff & Gravity
• Atmospheric properties
• Orbital properties: a, e, i,
• Complementarity RV, Astr…
> Access Dynamical Mass
Formation/Evolution Theories
• L – Mass Relation
• Gas Accretion Phase
Planetary System Architecture
• Dynamical stability
• Planet-disk interactions
Bpic b; ESO PR 0842
Stellar Environments
3/ Evolved Stars
Eta Car (HST/WFPC2)
N. Smith/NASA
VLT/NaCo (L’, Bra, Pfg)
Chesneau et al. 08
1’’
3/ Evolved stars
Environments
• Disks, Outflows and Shocks Structure & Physical conditions
(Excitation, kinematics, density , temperature).
• Interacting binary systems: cataclysmic variables and symbiotic systems
Archeology of Planetary systems
> Photospheric abundances of polluted white dwarfs
> Fe, Si, Ca, C , O, Mg abundances
• Frequency of terrestrial planet building
• Bulk chemistry of solid planetary bodies
• Mass constraints for exoplanetary
building blocks
• Frequency of water-rich exo-asteroids
• Constraints on habitable environments
Farihi et al. 2010
Conclusions
• Stellar environments under the Microscope
> Unique Spatial resolution & sensitivity
> Offering a versatile instrumentation
(wavelengths coverage, modes, spatial/spectral resolution…)
> Will count on new discoveries (ALMA, SPHERE, GPI, GAIA, TESS...)
> Mostly aimed at Characterizing , but not only…
• Incredible Machine for Disks, Exoplanets & Evolved stars
> Star/Disk Evolution Processes
> Disk Structure, Composition & Chemistry (Water & Organics)
> Gas/Dust components in planet-forming Regions
> Telluric and Giant Planets Characterization
(frequency, physics, atmosphere & formation)
> Twin Earth in RV & Imaging Super-Earths
> Conditions favorable for Life
E-IFU, E-HIRES & E-MIDIR
1/ Disks
Star – disk interactions
Star/Disk evolution under the microscope…
•
•
•
•
Geometry of Accretion Channels
E-ELT : 10 mas x 0.01 x 100pc
Inner Disk Properties (Warp, asymmetries…)
= 0.01 AU
Role of Magnetic Fields (Config., Reconnection)
= 2 Ro
Jet Launching Zone,
Stellar & Disk Winds
. VLT/CRIRES, CO emission
lines at 4.7µm (< 2 AU)
AS 205 N, Pontopiddan et al. 11
Related documents