Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
AO4ELT3 CONFERENCE. FLORENCE, ITALY, 26-31 MAY 2013 E-ELT’s View of Stellar Environments Gaël Chauvin - IPAG/CNRS Institute of Planetology & Astrophysics of Grenoble/France In Collaboration with ESO-PST, and E-ELT CAM, IFU, MIDIR, MOS, HIRES & PCS consortium Outline E-ELT’s View of Stellar Environments I- The E-ELT project • Telescope, Discovery Window, Other Projects • Instrumentation Road Map II- Stellar Environments • Disks • Exoplanets • Evolved Stars The E-ELT Project The Telescope • 40-m class telescope: largest opticalinfrared telescope in the world. (GMT = 25m; TMT = 30m) • Segmented primary mirror. • Adaptive optics assisted telescope. • Diffraction limited performance: 12mas@K-band Wide field of view: 7arcmin. • Mid-latitude site (Amazones/Chile). Fast instrument changes. VLT level of operations efficiency. The E-ELT Project E-ELT & other competitive projects Discoveries by opening a new parameter space • Increased Sensitivity • Spatial resolution (10 mas scale) 2 µm 50m2 50mas 400m2 18mas 600m2 14mas 1200m2 10mas (JWST: 25m2) (JWST: 68mas) The E-ELT Project Timeline: current/future missions 2012 2014 2016 2018 2020 2022 2024 Ground: Harps N/S, SOPHIE, NaCo, VISIR, CRIRES, WASP… Space: Spitzer, Herschel, Kepler, CoRoT - VLT & VLTI 2nd & 3rd generation PRIMA, K-MOS, SPHERE, MUSE, ESPRESSO, GRAVITY… - ALMA (ACA) - GAIA - Cheops - TESS - SKA - JWST - EChO/PLATO/FINESS? - TMT - GMT - E-ELT 2026 2028 The E-ELT Project Instrument Roadmap Instruments - First Light AO Mode λ (µm) Resolution FoV / Sampling Add. Mode E-CAM – 2023 SCAO, MCAO - IMG - MRS 0.8 – 2.4 BB, NB 3000 53.0” / 3 mas Astrometry 40mas Coronography E-IFU – 2023 SCAO, LTAO - IFU 0.5 – 2.4 4000 10 000 20 000 0.5×1.0” / 4mas 5.0×10.0” / 40mas Coronography E-MIDIR – 2024/2028 SCAO, LTAO - IMG - MRS - IFU 3 – 13 3 - 13 3-5 BB, NB 5000 100 000 18” / 12 mas Coronography Polarimetry SCAO - HRS 0.37 – 0.71 0.84 – 2.50 200 000 120 000 0.82” 0.027”×0.5” Polarimetry MOAO Slits IFUs IFUs 0.37 – 1.4 0.37 – 1.4 0.8 – 2.45 300- 2500 5000 – 30 000 4000 – 10 000 6.8” / 0.1” 420’ / 0.3” 2” / 40mas Multiplex ~ 400 Multiplex ~100 Multiplex ~10 Imaging? EPOL IFS 0.6 – 0.9 0.95 – 1.65 125 – 20 000 2.0” / 2.3 mas 0.8“ / 1.5 mas Coronography Polarimetry E-HIRES - 2024/2028 E-MOS - 2024/2028 E-PCS - 2027/2030 XAO 0.4”×1.5” / 4 mas The E-ELT Project Instrument Roadmap • 1st Light Instruments Instruments - First Light AO Mode λ (µm) Resolution FoV / Sampling Add. Mode E-CAM – 2023 SCAO, MCAO - IMG - MRS 0.8 – 2.4 BB, NB 3000 53.0” / 3 mas Astrometry 40mas Coronography E-IFU – 2023 SCAO, LTAO - IFU 0.5 – 2.4 4000 10 000 20 000 0.5×1.0” / 4mas 5.0×10.0” / 40mas Coronography E-MIDIR – 2024/2028 SCAO, LTAO - IMG - MRS - IFU 3 – 13 3 - 13 3-5 BB, NB 5000 100 000 18” / 12 mas Coronography Polarimetry SCAO - HRS 0.37 – 0.71 0.84 – 2.50 200 000 120 000 0.82” 0.027”×0.5” Polarimetry MOAO Slits IFUs IFUs 0.37 – 1.4 0.37 – 1.4 0.8 – 2.45 300- 2500 5000 – 30 000 4000 – 10 000 6.8” / 0.1” 420’ / 0.3” 2” / 40mas Multiplex ~ 400 Multiplex ~100 Multiplex ~10 Imaging? EPOL IFS 0.6 – 0.9 0.95 – 1.65 125 – 20 000 2.0” / 2.3 mas 0.8“ / 1.5 mas Coronography Polarimetry E-HIRES - 2024/2028 E-MOS - 2024/2028 E-PCS - 2027/2030 XAO SCAO: single-conjugated AO MCAO: Multi-Conjugated-AO MOAO: Multi-Object AO XAO: Extreme-AO 0.4”×1.5” / 4 mas LTAO: Laser-Tomographic AO The E-ELT Project • 2nd Instrument Roadmap Pool Instruments Instruments - First Light AO Mode λ (µm) Resolution FoV / Sampling Add. Mode E-CAM – 2023 SCAO, MCAO - IMG - MRS 0.8 – 2.4 BB, NB 3000 53.0” / 3 mas Astrometry 40mas Coronography E-IFU – 2023 SCAO, LTAO - IFU 0.5 – 2.4 4000 10 000 20 000 0.5×1.0” / 4mas 5.0×10.0” / 40mas Coronography E-MIDIR – 2024/2028 SCAO, LTAO - IMG - MRS - IFU 3 – 13 3 - 13 3-5 BB, NB 5000 100 000 18” / 12 mas Coronography Polarimetry SCAO - HRS 0.37 – 0.71 0.84 – 2.50 200 000 120 000 0.82” 0.027”×0.5” Polarimetry MOAO Slits IFUs IFUs 0.37 – 1.4 0.37 – 1.4 0.8 – 2.45 300- 2500 5000 – 30 000 4000 – 10 000 6.8” / 0.1” 420’ / 0.3” 2” / 40mas Multiplex ~ 400 Multiplex ~100 Multiplex ~10 Imaging? EPOL IFS 0.6 – 0.9 0.95 – 1.65 125 – 20 000 2.0” / 2.3 mas 0.8“ / 1.5 mas Coronography Polarimetry E-HIRES - 2024/2028 E-MOS - 2024/2028 E-PCS - 2027/2030 XAO SCAO: single-conjugated AO MCAO: Multi-Conjugated-AO MOAO: Multi-Object AO XAO: Extreme-AO 0.4”×1.5” / 4 mas LTAO: Laser-Tomographic AO The E-ELT Project Instrument Roadmap • XAO Instrument Instruments - First Light AO Mode λ (µm) Resolution FoV / Sampling Add. Mode E-CAM – 2023 SCAO, MCAO - IMG - MRS 0.8 – 2.4 BB, NB 3000 53.0” / 3 mas Astrometry 40mas Coronography E-IFU – 2023 SCAO, LTAO - IFU 0.5 – 2.4 4000 10 000 20 000 0.5×1.0” / 4mas 5.0×10.0” / 40mas Coronography E-MIDIR – 2024/2028 SCAO, LTAO - IMG - MRS - IFU 3 – 13 3 - 13 3-5 BB, NB 5000 100 000 18” / 12 mas Coronography Polarimetry SCAO - HRS 0.37 – 0.71 0.84 – 2.50 200 000 120 000 0.82” 0.027”×0.5” Polarimetry MOAO Slits IFUs IFUs 0.37 – 1.4 0.37 – 1.4 0.8 – 2.45 300- 2500 5000 – 30 000 4000 – 10 000 6.8” / 0.1” 420’ / 0.3” 2” / 40mas Multiplex ~ 400 Multiplex ~100 Multiplex ~10 Imaging? EPOL IFS 0.6 – 0.9 0.95 – 1.65 125 – 20 000 2.0” / 2.3 mas 0.8“ / 1.5 mas Coronography Polarimetry E-HIRES - 2024/2028 E-MOS - 2024/2028 E-PCS - 2027/2030 XAO SCAO: single-conjugated AO MCAO: Multi-Conjugated-AO MOAO: Multi-Object AO XAO: Extreme-AO 0.4”×1.5” / 4 mas LTAO: Laser-Tomographic AO The E-ELT Project Instrument Roadmap • Various AO Flavors Instruments - First Light AO Mode λ (µm) Resolution FoV / Sampling Add. Mode E-CAM – 2023 SCAO, MCAO - IMG - MRS 0.8 – 2.4 BB, NB 3000 53.0” / 3 mas Astrometry 40mas Coronography E-IFU – 2023 SCAO, LTAO - IFU 0.5 – 2.4 4000 10 000 20 000 0.5×1.0” / 4mas 5.0×10.0” / 40mas Coronography E-MIDIR – 2024/2028 SCAO, LTAO - IMG - MRS - IFU 3 – 13 3 - 13 3-5 BB, NB 5000 100 000 18” / 12 mas Coronography Polarimetry SCAO - HRS 0.37 – 0.71 0.84 – 2.50 200 000 120 000 0.82” 0.027”×0.5” Polarimetry MOAO Slits IFUs IFUs 0.37 – 1.4 0.37 – 1.4 0.8 – 2.45 300- 2500 5000 – 30 000 4000 – 10 000 6.8” / 0.1” 420’ / 0.3” 2” / 40mas Multiplex ~ 400 Multiplex ~100 Multiplex ~10 Imaging? EPOL IFS 0.6 – 0.9 0.95 – 1.65 125 – 20 000 2.0” / 2.3 mas 0.8“ / 1.5 mas Coronography Polarimetry E-HIRES - 2024/2028 E-MOS - 2024/2028 E-PCS - 2027/2030 XAO SCAO: single-conjugated AO MCAO: Multi-Conjugated-AO MOAO: Multi-Object AO XAO: Extreme-AO 0.4”×1.5” / 4 mas LTAO: Laser-Tomographic AO The E-ELT Project • Science Priority / Stellar Environments Instrument Roadmap Instruments - First Light AO Mode λ (µm) Resolution FoV / Sampling Add. Mode E-CAM – 2023 SCAO, MCAO - IMG - MRS 0.8 – 2.4 BB, NB 3000 53.0” / 3 mas Astrometry 40mas Coronography E-IFU – 2023 SCAO, LTAO - IFU 0.5 – 2.4 4000 10 000 20 000 0.5×1.0” / 4mas 5.0×10.0” / 40mas Coronography E-MIDIR – 2024/2028 SCAO, LTAO - IMG - MRS - IFU 3 – 13 3 - 13 3-5 BB, NB 5000 100 000 18” / 12 mas Coronography Polarimetry SCAO - HRS 0.37 – 0.71 0.84 – 2.50 200 000 120 000 0.82” 0.027”×0.5” Polarimetry MOAO Slits IFUs IFUs 0.37 – 1.4 0.37 – 1.4 0.8 – 2.45 300- 2500 5000 – 30 000 4000 – 10 000 6.8” / 0.1” 420’ / 0.3” 2” / 40mas Multiplex ~ 400 Multiplex ~100 Multiplex ~10 Imaging? EPOL IFS 0.6 – 0.9 0.95 – 1.65 125 – 20 000 2.0” / 2.3 mas 0.8“ / 1.5 mas Coronography Polarimetry E-HIRES - 2024/2028 E-MOS - 2024/2028 E-PCS - 2027/2030 Low XAO Medium 0.4”×1.5” / 4 mas High Outline E-ELT’s View of Stellar Environments I- The E-ELT project • Telescope, Discovery Window, Other Projects • Instrumentation Road Map II- Stellar Environments • Disks • Exoplanets • Evolved Stars Stellar Environments 1/ Circumstellar Disks Artist’s View ESO-PR-0942 1/ Disks Key Scientific Questions . Star/disk Evolution o Accretion, photo-evaporation, o Jets & Winds o Magnetic Fields . Disk Structure & Dynamics (Gas & Dust) . Chemistry: Water & Organics in Planet-Forming Zones . Planetary Formation o Initial conditions . Planets/Disk interactions Fomalhaut ALMA/HST Bowler et al. 12 1/ Disks Probing Planet-forming Regions snow line 1 Lsun @100 pc Distance Temperature Time E-ELT : 10 mas x 100pc 0.01 3000 0.4 days 0.1 1000 2 weeks 1.0 300 1 yr 10.0 100 30 yr E-MIDIR 100.0 30 1000 yr [AU] [K] VLT/CRIRES 1/ Disks Star – disk interactions Co-rotation radius Magnetospheric radius dust sublimation 1 Lsun @100 pc Distance Temperature Time snow line crystallization 0.01 3000 0.4 days E-ELT : 10 mas x 0.01 x 100pc 0.1 1000 2 weeks 1.0 300 1 yr Spectro-astrometry 10.0 100 30 yr E-MIDIR 100.0 30 1000 yr [AU] [K] VLT/CRIRES E-IFU, E-HIRES & E-MIDIR 1/ Disks Star – disk interactions Star/Disk evolution under the microscope… • • • • Geometry of Accretion Channels E-ELT : 10 mas x 0.01 x 100pc Inner Disk Properties (Warp, asymmetries…) = 0.01 AU Role of Magnetic Fields (Config., Reconnection) = 2 Ro Jet Launching Zone, MHD star – disk simulations Stellar & Disk Winds R/Ro Zanni & Ferreira 09 1/ Disks Gas Dynamics in planet-forming zones Proto-planetary disk of SR21 (Ophiucus, 160pc, 1 Myr) Gap at 18 AU (sub-mm continuum emission Brown e al. 07) • E-ELT-MIDIR simulations of 12CO line emission at 4.7µm of SR21. o Left: Continuum subtracted and velocity channel co-added o Right: Velocity map with a resolving power of 100 000 (3 km/s) E-MIDIR 32 AU 1/ Disks Gas Dynamics in planet-forming zones Water & Organics E-MIDIR • Distribution and Dynamics • Disk cooling & Planetesimals formation • Organic/Prebiotic chemistry (CH4, C2H2, HCN…) • Isotopic Fractionation • Transfer to Terrestrial Planets . Keck-NIRSPEC . high HRS (R = 25 000) in L-band. . Detection of H20 and OH radicals MIR lines . Hot (800K) water from the inner AUs DR Tau, AS 205 N; Salyk et al. 08 1/ Disks Observing the Dusty Disk Structures Asymmetries/Spirals in proto-planetary disks E-MIDIR • E-MIDIR simulations of high-contrast imaging at 10 µm. • Jupiter footprint at 20 AU (@100pc) from G-star, • Gap detection at a few mJy/as2 at 0.1-0.2” (10 – 20 AU) • ELT-MIR very competitive with JWST 1/ Disks Observing the Dusty Disk Structures Asymmetries/Spirals in proto-planetary disks E-MIDIR • E-MIDIR simulations of high-contrast imaging at 10 µm. • Jupiter footprint at 20 AU (@100pc) from G-star, • Gap detection at a few mJy/as2 at 0.1-0.2” (10 – 20 AU) • ELT-MIR very competitive with JWST 1/ Disks Observing the Dusty Disk Structures Asymmetries/Spirals in proto-planetary disks E-MIDIR • E-MIDIR simulations of high-contrast imaging at 10 µm. • Jupiter footprint at 20 AU (@100pc) from G-star, • Gap detection at a few mJy/as2 at 0.1-0.2” (10 – 20 AU) • ELT-MIR very competitive with JWST 1/ Disks Observing the Dusty Disk Structures Asymmetries/Spirals in proto-planetary disks E-MIDIR • E-MIDIR simulations of high-contrast imaging at 10 µm. • Jupiter footprint at 20 AU (@100pc) from G-star, • Gap detection at a few mJy/as2 at 0.1-0.2” (10 – 20 AU) • ELT-MIR very competitive with JWST Stellar Environments 2/ Exoplanets Artist’s View ESO-PR-1106 2/ Exoplanets Key Scientific Questions . Architecture of Exoplanetary Systems? . Formation & Evolution Processes . How does it depend on the Host properties? (Mass, Age, Composition…) . How frequent are the Telluric planets in the HZ? . Physics & Atmosphere of Exoplanets? (Telluric & Giant) . Bio-Signatures Discovery & Conditions favorable for Life? 2/ Exoplanets Exploration of Telluric Planets Expected planet population detected by Doppler spectroscopy with: o HARPS on the ESO 3.6-metre (precision 1 ms−1), Observed (Mayor et al. 11) corrected observed Predicted (Mordasini et al. 09) 2/ Exoplanets E-HIRES Exploration of Telluric Planets Expected planet population detected by Doppler spectroscopy with: o HARPS on the ESO 3.6-metre (precision 1 ms−1; left), o ESPRESSO on the VLT(precision 10 cms−1; middle) o and HIRES on the E-ELT(precision 1 cms−1; right). > HIRES, required to detect Earth-like planets in HZ of solar-type stars E-HIRES 2/ Exoplanets Twin Earth Discovery • Simulations: 1.8 MEarth Exo-Earth in HZ (P=145 days) around a bright and low-activity K1V star. • RV precision: 2cm/s. Limitations: instr. noise, stellar oscillations, granulation and activity. • Detailed observing strategy: 3 meas./night, every 3 nights over 8 months • Periodogram: 3σ detection (red) E-HIRES, E-MIDIR, E-PCS 2/ Exoplanets Planetary Atmospheres • Reflected, Transmitted or Emitted light of Exoplanets • Strongly or non-strongly irradiated planets • Physics of Planetary Atmospheres (Giant, Exo-Neptunes to Super-Earths) - Geometric Albedos Knutson et al. 09 - Chemical Composition (H20, CH4, CO, CO2, NH3…) - Atmosphere’s Dynamics . Inversion, . Vertical Mixing, . Circulation, . Evaporation, • Imprints of Formation Mechanisms? No Thermal Inversion Thermal inversion Spitzer 2/ Exoplanets E-IFU, E-MIDIR, E-PCS Imaging Planetary Systems Physics of Giant Planets (down to Super-Earths) • Observables: Luminosity, Teff & Gravity • Atmospheric properties • Orbital properties: a, e, i, • Complementarity RV, Astr… > Access Dynamical Mass Bpic; Lagrange et al. 10 HR8799; Marois et al. 10 2/ Exoplanets E-IFU, E-MIDIR, E-PCS Imaging Planetary Systems Physics of Giant Planets (down to Super-Earths) • Observables: Luminosity, Teff & Gravity • Atmospheric properties • Orbital properties: a, e, i, • Complementarity RV, Astr… > Access Dynamical Mass SPHERE E-IFU/MIDIR GAIA Mesa et al. 11 Kasper et al. 10 Lattanzi & Sozzetti 10 E-PCS 2/ Exoplanets E-IFU, E-MIDIR, E-PCS Imaging Planetary Systems Physics of Giant Planets (down to Super-Earths) • Observables: Luminosity, Teff & Gravity • Atmospheric properties • Orbital properties: a, e, i, • Complementarity RV, Astr… > Access Dynamical Mass Mordasini et al. 12 No Accretion Shock Formation/Evolution Theories • L – Mass Relation • Gas Accretion Phase Accretion Shock 2/ Exoplanets E-IFU, E-MIDIR, E-PCS Imaging Planetary Systems Physics of Giant Planets (down to Super-Earths) • Observables: Luminosity, Teff & Gravity • Atmospheric properties • Orbital properties: a, e, i, • Complementarity RV, Astr… > Access Dynamical Mass Formation/Evolution Theories • L – Mass Relation • Gas Accretion Phase Planetary System Architecture • Dynamical stability • Planet-disk interactions Bpic b; ESO PR 0842 Stellar Environments 3/ Evolved Stars Eta Car (HST/WFPC2) N. Smith/NASA VLT/NaCo (L’, Bra, Pfg) Chesneau et al. 08 1’’ 3/ Evolved stars Environments • Disks, Outflows and Shocks Structure & Physical conditions (Excitation, kinematics, density , temperature). • Interacting binary systems: cataclysmic variables and symbiotic systems Archeology of Planetary systems > Photospheric abundances of polluted white dwarfs > Fe, Si, Ca, C , O, Mg abundances • Frequency of terrestrial planet building • Bulk chemistry of solid planetary bodies • Mass constraints for exoplanetary building blocks • Frequency of water-rich exo-asteroids • Constraints on habitable environments Farihi et al. 2010 Conclusions • Stellar environments under the Microscope > Unique Spatial resolution & sensitivity > Offering a versatile instrumentation (wavelengths coverage, modes, spatial/spectral resolution…) > Will count on new discoveries (ALMA, SPHERE, GPI, GAIA, TESS...) > Mostly aimed at Characterizing , but not only… • Incredible Machine for Disks, Exoplanets & Evolved stars > Star/Disk Evolution Processes > Disk Structure, Composition & Chemistry (Water & Organics) > Gas/Dust components in planet-forming Regions > Telluric and Giant Planets Characterization (frequency, physics, atmosphere & formation) > Twin Earth in RV & Imaging Super-Earths > Conditions favorable for Life E-IFU, E-HIRES & E-MIDIR 1/ Disks Star – disk interactions Star/Disk evolution under the microscope… • • • • Geometry of Accretion Channels E-ELT : 10 mas x 0.01 x 100pc Inner Disk Properties (Warp, asymmetries…) = 0.01 AU Role of Magnetic Fields (Config., Reconnection) = 2 Ro Jet Launching Zone, Stellar & Disk Winds . VLT/CRIRES, CO emission lines at 4.7µm (< 2 AU) AS 205 N, Pontopiddan et al. 11