Download Signaling molecule

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Figure 11.1
CELL COMMUNICATION
Figure 11.2
 factor
Receptor
1 Exchange
of mating
factors

a
a factor
Yeast cell,
Yeast cell,
mating type a
mating type 
2 Mating

a
3 New a/ cell
a/
Figure 11.3
1 Individual
rod-shaped
cells
2 Aggregation
in progress
0.5 mm
3 Spore-forming
structure
(fruiting body)
2.5 mm
Fruiting bodies
Figure 11.4
Plasma membranes
Gap junctions
between animal cells
(a) Cell junctions
(b) Cell-cell recognition
Plasmodesmata
between plant cells
Figure 11.5a
Local signaling
Electrical signal
along nerve cell
triggers release of
neurotransmitter.
Target cell
Secreting
cell
Local regulator
diffuses through
extracellular fluid.
(a) Paracrine signaling
Neurotransmitter
diffuses across
synapse.
Secretory
vesicle
Target cell
is stimulated.
(b) Synaptic signaling
Figure 11.5b
Long-distance signaling
Endocrine cell
Blood
vessel
Hormone travels
in bloodstream.
Target cell
specifically
binds
hormone.
(c) Endocrine (hormonal) signaling
Figure 11.6-1
EXTRACELLULAR
FLUID
1 Reception
Receptor
Signaling
molecule
CYTOPLASM
Plasma membrane
Figure 11.6-2
EXTRACELLULAR
FLUID
1 Reception
CYTOPLASM
Plasma membrane
2 Transduction
Receptor
Relay molecules in a signal transduction
pathway
Signaling
molecule
Figure 11.6-3
EXTRACELLULAR
FLUID
1 Reception
CYTOPLASM
Plasma membrane
2 Transduction
3 Response
Receptor
Activation
of cellular
response
Relay molecules in a signal transduction
pathway
Signaling
molecule
Figure 11.7b
G protein-coupled
receptor
Plasma
membrane
Activated
receptor
1
Inactive
enzyme
GTP
GDP
GDP
CYTOPLASM
Signaling
molecule
Enzyme
G protein
(inactive)
2
GDP
GTP
Activated
enzyme
GTP
GDP
Pi
3
Cellular response
4
Figure 11.7c
Signaling
molecule (ligand)
Ligand-binding site
 helix in the
membrane
Signaling
molecule
Tyrosines
CYTOPLASM
Tyr
Tyr
Tyr
Tyr
Tyr
Tyr
Receptor tyrosine
kinase proteins
(inactive monomers)
1
Tyr
Tyr
Tyr
Tyr
Tyr
Tyr
Tyr
Tyr
Tyr
Tyr
Tyr
Tyr
Dimer
2
Activated relay
proteins
3
Tyr
Tyr
P Tyr
Tyr P
P Tyr
Tyr P
Tyr
Tyr
P Tyr
Tyr P
P Tyr
Tyr P
Tyr
Tyr
P Tyr
Tyr P
P Tyr
Tyr P
6
ATP
Activated tyrosine
kinase regions
(unphosphorylated
dimer)
6 ADP
Fully activated
receptor tyrosine
kinase
(phosphorylated
dimer)
4
Inactive
relay proteins
Cellular
response 1
Cellular
response 2
Figure 11.7d
1
Signaling
molecule
(ligand)
3
2
Gate
closed
Ions
Plasma
Ligand-gated
membrane
ion channel receptor
Gate closed
Gate
open
Cellular
response
Figure 11.9-1
Hormone
(testosterone)
EXTRACELLULAR
FLUID
Plasma
membrane
Receptor
protein
DNA
NUCLEUS
CYTOPLASM
Figure 11.9-2
Hormone
(testosterone)
EXTRACELLULAR
FLUID
Plasma
membrane
Receptor
protein
Hormonereceptor
complex
DNA
NUCLEUS
CYTOPLASM
Figure 11.9-3
Hormone
(testosterone)
EXTRACELLULAR
FLUID
Plasma
membrane
Receptor
protein
Hormonereceptor
complex
DNA
NUCLEUS
CYTOPLASM
Figure 11.9-4
Hormone
(testosterone)
EXTRACELLULAR
FLUID
Plasma
membrane
Receptor
protein
Hormonereceptor
complex
DNA
mRNA
NUCLEUS
CYTOPLASM
Figure 11.9-5
Hormone
(testosterone)
EXTRACELLULAR
FLUID
Plasma
membrane
Receptor
protein
Hormonereceptor
complex
DNA
mRNA
NUCLEUS
CYTOPLASM
New protein
Figure 11.10
Signaling molecule
Receptor
Activated relay
molecule
Inactive
protein kinase
1
Active
protein
kinase
1
Inactive
protein kinase
2
ATP
ADP
P
Active
protein
kinase
2
PP
Pi
Inactive
protein kinase
3
ATP
ADP
Pi
Active
protein
kinase
3
PP
Inactive
protein
P
ATP
P
ADP
PP
Pi
Active
protein
Cellular
response
Figure 11.12
First messenger
(signaling molecule
such as epinephrine)
Adenylyl
cyclase
G protein
G protein-coupled
receptor
GTP
ATP
cAMP
Second
messenger
Protein
kinase A
Cellular responses
Figure 11.14-1
EXTRACELLULAR
FLUID
Signaling molecule
(first messenger)
G protein
DAG
GTP
G protein-coupled
receptor
Phospholipase C
PIP2
IP3
(second messenger)
IP3-gated
calcium channel
Endoplasmic
reticulum (ER)
CYTOSOL
Ca2
Figure 11.14-2
EXTRACELLULAR
FLUID
Signaling molecule
(first messenger)
G protein
DAG
GTP
G protein-coupled
receptor
Phospholipase C
PIP2
IP3
(second messenger)
IP3-gated
calcium channel
Endoplasmic
reticulum (ER)
CYTOSOL
Ca2
Ca2
(second
messenger)
Figure 11.14-3
EXTRACELLULAR
FLUID
Signaling molecule
(first messenger)
G protein
DAG
GTP
G protein-coupled
receptor
Phospholipase C
PIP2
IP3
(second messenger)
IP3-gated
calcium channel
Endoplasmic
reticulum (ER)
CYTOSOL
Various
proteins
activated
Ca2
Ca2
(second
messenger)
Cellular
responses
Figure 11.15
Growth factor
Reception
Receptor
Phosphorylation
cascade
Transduction
CYTOPLASM
Inactive
transcription
factor
Active
transcription
factor
P
Response
DNA
Gene
NUCLEUS
mRNA
Figure 11.18
Signaling
molecule
Receptor
Relay
molecules
Response 1
Cell A. Pathway leads
to a single response.
Activation
or inhibition
Response 2
Response 3
Cell B. Pathway branches,
leading to two responses.
Response 4
Cell C. Cross-talk occurs
between two pathways.
Response 5
Cell D. Different receptor
leads to a different
response.
Figure 11.21a
Ced-9
protein (active)
inhibits Ced-4
activity
Mitochondrion
Receptor
for deathsignaling
molecule
Ced-4 Ced-3
Inactive proteins
(a) No death signal
Figure 11.21b
Ced-9
(inactive)
Cell
forms
blebs
Deathsignaling
molecule
Active Active
Ced-4 Ced-3
Activation
cascade
(b) Death signal
Other
proteases
Nucleases
Figure 11.22
Interdigital tissue
Cells undergoing
apoptosis
Space between
1 mm
digits
LECTURE PRESENTATIONS
For CAMPBELL BIOLOGY, NINTH EDITION
Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson
Chapter 12
The Cell Cycle
Lectures by
Erin Barley
Kathleen Fitzpatrick
© 2011 Pearson Education, Inc.
Figure 12.2
100 m
(a) Reproduction
200 m
(b) Growth and
development
20 m
(c) Tissue renewal
Figure 12.4
Sister
chromatids
Centromere
0.5 m
Figure 12.5-3
Chromosomes
1
Chromosomal
DNA molecules
Centromere
Chromosome
arm
Chromosome duplication
(including DNA replication)
and condensation
2
Sister
chromatids
Separation of sister
chromatids into
two chromosomes
3
Figure 12.6
INTERPHASE
G1
S
(DNA synthesis)
G2
Figure 12.7a
G2 of Interphase
Centrosomes
(with centriole
pairs)
Chromatin
(duplicated)
Prophase
Early mitotic
spindle
Plasma
membrane
Nucleolus
Nuclear
envelope
Aster
Centromere
Chromosome, consisting
of two sister chromatids
Prometaphase
Fragments
of nuclear
envelope
Kinetochore
Nonkinetochore
microtubules
Kinetochore
microtubule
Figure 12.8
Aster
Centrosome
Sister
chromatids
Metaphase
plate
(imaginary)
Microtubules
Chromosomes
Kinetochores
Centrosome
1 m
Overlapping
nonkinetochore
microtubules
Kinetochore
microtubules
0.5 m
Figure 12.9b
CONCLUSION
Microtubule
Chromosome
movement
Motor protein
Chromosome
Kinetochore
Tubulin
subunits
Figure 12.7b
Metaphase
Anaphase
Metaphase
plate
Spindle
Centrosome at
one spindle pole
Telophase and Cytokinesis
Cleavage
furrow
Daughter
chromosomes
Nuclear
envelope
forming
Nucleolus
forming
Figure 12.11
Nucleus
Chromatin
condensing
Nucleolus
1 Prophase
Chromosomes
2 Prometaphase 3 Metaphase
Cell plate
4 Anaphase
10 m
5 Telophase
Figure 12.11a
Nucleus
Chromatin
condensing
Nucleolus
10 m
1 Prophase
Figure 12.11b
Chromosomes
10 m
2 Prometaphase
Figure 12.11c
10 m
3 Metaphase
Figure 12.11d
10 m
4 Anaphase
Figure 12.11e
Cell plate
10 m
5 Telophase
Figure 12.UN02
Figure 12.10
(a) Cleavage of an animal cell (SEM)
100 m
Cleavage furrow
Contractile ring of
microfilaments
(b) Cell plate formation in a plant cell (TEM)
Vesicles
forming
cell plate
Wall of parent cell
Cell plate
1 m
New cell wall
Daughter cells
Daughter cells
Figure 12.12-4
Origin of
replication
E. coli cell
1 Chromosome
replication
begins.
2 Replication
continues.
3 Replication
finishes.
4 Two daughter
cells result.
Cell wall
Plasma membrane
Bacterial chromosome
Two copies
of origin
Origin
Origin
Figure 12.13
(a) Bacteria
Bacterial
chromosome
Chromosomes
(b) Dinoflagellates
Microtubules
Intact nuclear
envelope
Kinetochore
microtubule
(c) Diatoms and
some yeasts
Intact nuclear
envelope
Kinetochore
microtubule
(d) Most eukaryotes
Fragments of
nuclear envelope
Figure 12.15
G1 checkpoint
Control
system
G1
M
G2
M checkpoint
G2 checkpoint
S
Figure 12.16
G0
G1 checkpoint
G1
(a) Cell receives a go-ahead
signal.
G1
(b) Cell does not receive a
go-ahead signal.
Figure 12.17b
Cdk
Degraded
cyclin
Cyclin is
degraded
G2
Cdk
checkpoint
MPF
Cyclin
(b) Molecular mechanisms that help regulate the cell cycle
Figure 12.17a
M
G 1 S G2
M
G1 S
G2
M
G1
MPF activity
Cyclin
concentration
Time
(a) Fluctuation of MPF activity and cyclin concentration
during the cell cycle
Figure 12.20
Tumor
Lymph
vessel
Blood
vessel
Glandular
tissue
Cancer
cell
1 A tumor grows
from a single
cancer cell.
Metastatic
tumor
2 Cancer
cells invade
neighboring
tissue.
3 Cancer cells spread
through lymph and
blood vessels to
other parts of the
body.
4 Cancer cells
may survive
and establish
a new tumor
in another part
of the body.
Related documents