Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
ELEG 648 Summer 2012 Lecture #1 Mark Mirotznik, Ph.D. Associate Professor The University of Delaware Tel: (302)831-4221 Email: [email protected] Vector Analysis Review: A aA A A a A A A aA A a = unit vector 1. Dot Product (projection) A B A B cos( AB ) an 2. Cross Product A B an A B sin( AB ) B aB B AB A aA A Orthogonal Coordinate Systems: A au1 Au1 au2 Au2 au3 Au3 A a A au1 au 2 au 3 au2 au1 au 3 au3 au1 au 2 A Au1 2 Au 2 2 Au 32 A B Au1Bu1 Au 2 Bu 2 Au 3Bu 3 A B au1 ( Au 2 Bu 3 Au 3 Bu 2 ) au 2 ( Au 3 Bu1 Au1Bu 3 ) au 3 ( Au1Bu 2 Au 2 Bu1 ) au1 au 2 au 3 A B Au1 Au 2 Au 3 Bu1 Bu 2 Bu 3 Orthogonal Coordinate Systems: dl au1dl1 au 2dl2 au 3dl3 dS an dS an dS dv dl1 dl2 dl3 dl3 dl1 dl2 dl Cartesian Coordinate Systems: A ax Ax a y Ay az Az A a A ax a y az a y ax az az ax a y A B Ax Bx Ay By Az Bz ax A B Ax Bx ay Ay By az Az Bz z y x Cartesian Coordinate Systems (cont): dl ax dx a y dy az dz dl dx dy dz ds x ax dy dz ds y a y dx dz ds z az dx dy 2 dv dx dy dz 2 2 Cylindrical Coordinate Systems: A ar Ar a A az Az A a A dl ar dr a rd az dz z dsr ar rd dz ds a dr dz ds z a z rd dz dv rdr d dz (r,,z) z r y x Spherical Coordinate Systems: A aR AR a A a A A a A dl aR dR a Rd a R sin( )d 2 z dsR aR R sin( )d d (R,,) ds a R sin( )dR d R ds a RdR d dv R 2 sin( )dR d d y x Vector Coordinate Transformation: Ax cos( ) sin( ) 0 Ar Ay sin( ) cos( ) 0 A Az 0 0 1 Az Ax sin( ) cos( ) cos( ) cos( ) sin( ) AR Ay sin( ) sin( ) cos( ) sin( ) cos( ) A Az cos( ) sin( ) 0 A Gradient of a Scalar Field: Assume f(x,y,z) is a scalar field The maximum spatial rate of change of f at some location is a vector given by the gradient of f denoted by Grad(f) or f f f f f a x a y a z x y z f f f f ar a az r r z f f f f a R a a R r R sin( ) Divergence of a Vector Field: Assume E(x,y,z) is a vector field. The divergence of E is defined as the net outward flux of E in some volume as the volume goes to zero. It is denoted by E E x E y E z E x y z 1 1 E E z E (rEr ) r r r z 1 1 2 E 2 ( R ER ) (sin( ) E ) R sin( ) R R E 1 R sin( ) Curl of a Vector Field: Assume E(x,y,z) is a vector field. The curl of E is measure of the circulation ofE also called a “vortex” source. It is denoted by E ax E x E x ar 1 E r r Er ay y Ey az z E z ra a z z rE E z aR Ra 1 E 2 R sin( ) R ER RE R sin( )a R sin( ) E Laplacian of a Scalar Field: Assume f(x,y,z) is a scalar field. The Laplacian is defined as (V ) and denoted by 2V V V V V 2 2 2 x y z 2 2 2 2 2 2 1 1 V V 2 V (r V ) 2 2 2 r r r r z 1 1 2 2 V 2 (R V) (sin( ) V ) R R sin( ) R R 1 2V 2 2 R sin ( ) 2 Examples: 1. Given the scalar function V ( x, y, z ) sin( / 2 x) sin( / 2 y ) e z Find the magnitude and direction of the maximum rate of chance at location (xo,yo,zo) 2. Determine (V ) 3. Determine (V ) 3. The magnetic field produced by a long wire conducting a constant current Io Is given by B(r ) a Find B r Basic Theorems: 1. Divergence Theorem or Gauss’s Law E dv E ds v s 2. Stokes Theorem ( E ) ds E dl s c Examples: 1. Verify the Divergence Theorem for 2 A(r , z ) ar r az 2 z on a cylindrical region enclosed by r=5, z=0 and z=4 r=5 z=4 z=0 Odds and Ends: 1. Normal component of field E n E En 2. Tangential component of field n E Et n Maxwell’s Equations in Differential Form B Faraday’s Law E M t D H J c J i Ampere’s Law t Gauss’s Law D B m Gauss’s Magnetic Law Faraday’s Law B t C S E B E t c E dl t s B ds Ampere’s Law J D t J H H D H J t c H dl t s D ds s J ds Gauss’s Law Qtot D D s D ds v dv Qtot Gauss’s Magnetic Law B 0 s B ds 0 “all the flow of B entering the volume V must leave the volume” B CONSTITUTIVE RELATIONS D E r o=permittivity (F/m) o=8.854 x 10-12 (F/m) BH r o=permeability (H/m) o=4 x 10-7 (H/m) Jc E =conductivity (S/m) POWER and ENERGY H (eq1) E M d t E (eq2) H E Ji J d Jc Ji t take H (eq1) E (eq2) (eq3) H E E H H M d E ( J d J c J i ) Using the vector identity ( A B) B ( A) A ( B) (eq4) ( E H ) H M d E ( J d J c J i ) 0 n E, H Ji V , , Integrate eq4 over the volume V in the figure (eq5) ( E H ) dv [ H M E ( J J d d c J i )] dv v v Applying the divergence theorem H E (eq6) s ( E H ) ds v [ H E E E E J i )] dv 0 t t S POWER and ENERGY (continued) H E (eq6) s ( E H ) ds v [ H E E E E J i )] dv 0 t t H 1 E 1 2 2 2 H H wm , E E we , E E E t t 2 t t 2 t t w w 2 (eq7) s ( E H ) ds v [ m e ] dv v [ E J i ] dv v E dv 0 t t 2 (eq8) s ( E H ) ds v [ we wm ] dv v [ E J i ] dv v E dv 0 t Ps s ( E H ) ds 1 1 2 2 Wm v [ H ] dv , We v [ E ] dv 2 2 2 Pi v [ E J i ] dv 0, Pd v E dv 0 Stored magnetic power (W) Ps What is this term? Supplied power (W) Wm We Pi Pd t t Dissipated power (W) Stored electric power (W) POWER and ENERGY (continued) Ps s ( E H ) ds 1 1 2 2 Wm v [ H ] dv , We v [ E ] dv 2 2 2 Pi v [ E J i ] dv 0, Pd v E dv 0 Stored magnetic power (W) Ps What is this term? Supplied power (W) Wm We Pi Pd t t Dissipated power (W) Stored electric power (W) Ps = power exiting the volume through radiation S E H W/m2 Poynting vector TIME HARMONIC EM FIELDS Assume all sources have a sinusoidal time dependence and all materials properties are linear. Since Maxwell’s equations are linear all electric and magnetic fields must also have the same sinusoidal time dependence. They can be written for the electric field as: E ( x, y, z, t ) Eo ( x, y, z ) cos( t ( x, y, z )) Euler’s Formula ~ e jt cos(t ) j sin(t ) E ( x, y, z, t ) Re[ E ( x, y, z ) e jt ] ~ E ( x, y, z ) is a complex function of space (phasor) called the time-harmonic electric field. All field values and sources can be represented by their time-harmonic form. ~ E ( x, y, z , t ) Re[ E ( x, y, z ) e jt ] ~ D ( x, y, z , t ) Re[ D( x, y, z ) e jt ] ~ H ( x, y, z , t ) Re[ H ( x, y, z ) e jt ] ~ B ( x, y, z , t ) Re[ B ( x, y, z ) e jt ] ~ J ( x, y, z , t ) Re[ J ( x, y, z ) e jt ] ( x, y, z , t ) Re[ ~ ( x, y, z ) e jt ] PROPERTIES OF TIME HARMONIC FIELDS Time derivative: Time integration: ~ ~ [Re[E ( x, y, z ) e jt ]] j[Re[E ( x, y, z ) e jt ] t 1 ~ ~ jt jt [Re[ E ( x , y , z ) e ] dt [Re[ E ( x , y , z ) e ] j TIME HARMONIC MAXWELL’S EQUATIONS B E M t D H J t D B m ~ ~ ~ Re E e jt Re B e jt Re M e jt t ~ ~ ~ Re H e jt Re D e jt Re J e jt t ~ Re D e jt Re ~ e jt ~ Re B e jt Re ~ e jt m Employing the derivative property results in the following set of equations: ~ ~ ~ E j B M ~ ~ ~ H j D J ~ D ~ ~ B ~m TIME HARMONIC EM FIELDS BOUNDARY CONDITIONS AND CONSTITUTIVE PROPERTIES The constitutive properties and boundary conditions are very similar for the time harmonic form: General Boundary Conditions Constitutive Properties ~ ~ D E ~ ~ BH ~ ~ Jc E ~ ~ nˆ ( E2 E1 ) 0 ~ ~ ~ nˆ ( H 2 H1 ) J s ~ ~ nˆ ( D2 D1 ) ~s ~ ~ nˆ ( B2 B1 ) 0 PEC Boundary Conditions ~ nˆ E2 0 ~ ~ nˆ H 2 J s ~ nˆ D2 ~s ~ nˆ B2 0 TIME HARMONIC EM FIELDS IMPEDANCE BOUNDARY CONDITIONS If one of the material at an interface is a good conductor but of finite conductivity it is useful to define an impedance boundary condition: 2,2,2 1,1,1 1>> 2 Z s Rs jX s (1 j ) 2 ~ ~ ~ ~ Et Z s J s Z s nˆ H (1 j ) nˆ H 2 POWER and ENERGY: TIME HARMONIC ~ ~ Ps s ( E H * ) ds 1 ~2 1 ~2 Wm v [ H ] dv , We v [ E ] dv 4 4 1~ ~ 1 ~2 Pi v [ E J i* ] dv 0, Pd v E dv 0 2 2 Time average magneticenergy (J) Supplied complex power (W) Ps j 2 (Wm We ) Pi Pd Time average electric energy (J) Time average exiting power Dissipated real power (W) CONTINUITY OF CURRENT LAW B E t D H J t D B 0 D ( H ) [ J ] [ D] J t t vector identity ( A) 0 0 [ D] J t 0 [] J t J t time harmonic J j SUMMARY Time Domain B E M t D D H J t B m nˆ ( E2 E1 ) 0 nˆ ( H 2 H1 ) J s nˆ ( D2 D1 ) s nˆ ( B2 B1 ) 0 Frequency Domain ~ ~ ~ E j B M ~ D ~ ~ ~ ~ ~ ~ nˆ ( E2 E1 ) 0 nˆ ( H 2 H1 ) J s ~ ~ ~ ~ nˆ ( D2 D1 ) ~s nˆ ( B2 B1 ) 0 Z s Rs jX s (1 j ) D E BH Jc E Ps s ( E H ) ds 1 1 2 2 Wm v [ H ] dv , We v [ E ] dv 2 2 2 Pi v [ E J i ] dv 0, Pd v E dv 0 ~ ~ ~ H j D J ~ B ~m 2 ~ ~ D E ~ ~ BH ~ ~ Jc E ~ ~ Ps s ( E H * ) ds 1 ~2 1 ~2 Wm v [ H ] dv , We v [ E ] dv 4 4 1~ ~ 1 ~2 Pi v [ E J i* ] dv 0, Pd v E dv 0 2 2 Electromagnetic Properties of Materials Primary Material Properties Electrical Properties r o=permittivity (F/m) o=8.854 x 10-12 (F/m) =conductivity (S/m) Magnetic Properties r o=permeability (H/m) o=4 x 10-7 (H/m) Secondary Material Properties Electrical Properties n r e Index of refraction Electric susceptibility Magnetic Properties m Magnetic susceptibility Electric Properties of Materials Qi Eext + ++++ Eext li + - - - - ++++ Eext - - - ++++ No external field Eext - - - Bulk material (N molecules) Applied external field Electric dipole moment of individual atom or molecule: pi Qili Net dipole moment or polarization vector: N N P pi Qili i 1 i 1 Electric Properties of Materials (continued) ++++ Eext - - - ++++ Eext - - - ++++ - - - Bulk material (N molecules) ? P o e E What are the assumptions here? N N P pi Qili i 1 i 1 D oE P o E o eE o (1 e ) E o r E r 1 e Static permittivity or relative permittivity Electric Properties of Materials (continued) Conductivity E J y z J=current density=qvvz where qv=volume charge density and vz= charge drift velocity x E Where e is called the electron mobility. The current density is thus given by 1 m When subjected to an external electric field E the charge velocity is increased and is given by ve qv e E v J q e E Where is called the conductivity. Its units are S/m Material Where is called the resistivity. Silver Glass Sea Water Conductivity (S/m) 6.1 x 107 1.0 x 10-12 4 Electric Properties of Materials (continued) 1. Orientational Polarization: molecules have a slight polarization even in the absence of an applied field. However each polarization vector is orientated randomly so the net P vector is zero. Such materials are known as polar; water is a good example. rH 2O 81 2. Ionic Polarization: Evident in materials ionic materials such as NaCl. Positive and negative ions tend to align with the applied field. 3. Electronic Polarization: Evident in most materials and exists when an applied field displaces the electron cloud of an atom relative to the positive nucleus. Magnetic Properties of Materials Ii Mi Bext Bext Net magnetic dipole moment or magnetization vector: N N M M i I i dsi nˆi No magnetic field: random oriented magnetic dipoles i 1 Magnetic dipoles randomly oriented resulting in zero net magnetization vector: N M I i dsi nˆi 0 i 1 i 1 Applied external magnetic field Magnetic dipoles tend to align with external magnetic field resulting in non-zero net magnetization vector: N M I i dsi nˆi 0 i 1 Magnetic Properties of Materials (continued) Bext Bext Applied external magnetic field ? M o m H What are the assumptions here? N N M M i I i dsi nˆi i 1 i 1 B o H M o H o m H o (1 m ) H o r H r 1 m Static permeability or relative permeability Magnetic Properties of Materials (continued) 1. Diamagnetic: Net magnetization vector tends to appose the direction of the applied field resulting in a relative permeability slightly less than 1.0 Examples: silver (r=0.9998) 2. Paramagnetic: Net magnetization vector tends to align in the direction of the applied field resulting in a relative permeability slightly greater than 1.0 Examples: Aluminum (r=1.00002) 3 Ferromagnetic: Net magnetization vector tends to align strongly in the direction of the applied field resulting in a relative permeability much greater than 1.0 Examples: Iron (r=5000) . Classification of Materials 1. Homogenous or Inhomogenous: If the material properties are independent of spatial location then the material is homogenous, otherwise it is called inhomogenous ( x, y, z ) Inhomogenous 2. Isotropic or Anisotropic: If the material properties are independent of the polarization of the applied field then the material is isotropic, otherwise it is called anisotropic. Dx xx D y yx Dz zx xy yy zy xz E x yz E y D E zz E z anisotropic 3. Linear or non-Linear: If the material properties are independent on the magnitude and phase of the electric and magnetic fields, otherwise it is called non-linear 2 3 D o E o E 1E 3 E ... Classification of Materials 4. Dispersive or non-dispersive: If the material properties are independent of frequency then the material is non-dispersive, otherwise it is called dispersive +++ + ++++ ---++++ -- -++++ ---- ---+++ + ---+++ + ---- + + + ++ +- +- + +-- + + - -- - +- +- + + ++- +-- +- + ---- t=t4 t=t5 t=t3 ++++ -+ -+ -+ -+ -+ -+ -+ -+ ---- + + + +- t=t2 --++++ + + - - - +- t=t1 t=t6 A material’s atoms or molecules attempt to keep up with a changing electric field. This results in two things: (1) friction causes energy loss via heat and (2) the dynamic response of the molecules will be a function of the frequency of the applied field (i.e. frequency dependant material properties) Electric Properties of Materials Frequency Behavior (Complex Permittivity) ~ ~ E j B ~ ~ ~ ~ H j D J i J c ~ D ~ ~ B 0 ~ ~ D * ( ) E ~ ~ B o H ~ ~ Jc s E Dielectric constant loss term * ( ) ( ) j ( ) is called the complex permittivity ~ ~ E j o H ~ ~ ~ ~ H j * E J i s E ~ ( * E ) ~ ~ (H ) 0 ~ ~ E j o H ~ ~ ~ H j eff ( ) E J i ~ ( * E ) ~ ~ (H ) 0 ~ ~ E j o H ~ ~ ~ ~ H j ( j ) E J i s E ~ ( * E ) ~ ~ (H ) 0 eff ( ) ( ) j ( ) j s Frequency Behavior of Sea Water Electric Properties of Materials Frequency Behavior (Complex Permittivity) ~ ~ E j o H ~ ~ ~ ~ H j ( j ) E J i s E ~ ( * E ) ~ ~ ~ E j o H ~ ~ ~ ~ H j E J i ( s ) E ~ ( * E ) ~ ~ (H ) 0 ~ (H ) 0 ~ ~ E j o H ~ ~ ~ ~ H j E J i eff E ~ ( * E ) ~ ~ ~ E j o H ~ ~ ~ ~ H J d J i J eff ~ ( * E ) ~ ~ (H ) 0 ~ (H ) 0 ~ ~ J d j E ~ Ji ~ ~ J eff eff E eff ( ) s a s Displacement current Source current Effective electric conduction current Electric Properties of Materials Frequency Behavior (Complex Permittivity) ~ ~ E j o H ~ ~ ~ ~ H j E J i eff E ~ ( * E ) ~ ~ (H ) 0 eff ( ) s a s ~ ~ E j o H eff ~ ~ ~ H j (1 j )E Ji ~ ( * E ) ~ ~ (H ) 0 ~ ~ E j o H ~ ~ ~ H j (1 j tan( eff )) E J i ~ ( * E ) ~ ~ ~ E j o H ~ ~ ~ H J cd J i ~ ( * E ) ~ ~ (H ) 0 ~ (H ) 0 tan( eff ) eff ~ ~ J cd j (1 j eff ) E Electric Properties of Materials Frequency Behavior (Complex Permittivity) ~ ~ E j o H ~ ~ ~ ~ H J d J i J eff ~ ( * E ) ~ ~ (H ) 0 ~ ~ J d j E ~ Ji ~ ~ J eff eff E Good Dielectric ~ ~ J d J eff ( eff 1) Displacement current Source current Effective electric conduction current eff ( ) s a s Good Conductor ~ ~ J eff J d ( eff 1) Wave Equation Time Dependent Homogenous Wave Equation (E-Field) H E t E H E J t E B 0 H [ E ] ( ) t E H t E E E J t t Vector Identity 2 E E J E 2 A ( A) 2 A t t t 2 E E J ( E ) 2 E 2 t t t 2 1 E E J 2 E 2 t t t 2 E E J 1 2 E 2 t t t Wave Equation Source-Free Time Dependent Homogenous Wave Equation (E-Field) 2 E E J 1 2 E 2 t t t Source Free J 0, 0 2 E E 2 E 2 0 t t Source-Free Lossless Time Dependent Homogenous Wave Equation (E-Field) Lossless 0 2 E 2 E 2 0 t Wave Equation Source-Free Time Dependent Homogenous Wave Equation (H-Field) 2 1 H H 2 H 2 J t t Source Free J 0, 0 Source Free and Lossless 2 H H 2 H 2 0 t t J 0, 0, 0 2 H 2 H 2 0 t Wave Equation: Time Harmonic Time Domain 2 E E J 1 2 E 2 t t t Source Free J 0, 0 2 E E 2 E 2 0 t t Lossless 0 2 E 2 E 2 0 t Frequency Domain ~ ~ ~ ~ 1 2 E 2 E j E J ~ Source Free J 0, 0 ~ ~ ~ 2 E 2 E j E 0 Lossless 0 ~ ~ 2 E 2 E 0 “Helmholtz Equation” General Solution: Point Source 2 E 2 E 2 0 t 1 2 2E E 2 0 r r r r t 0 E (r , t ) E (r , t )aˆ E (r , t )aˆ Er (r , t )aˆr point source y 2 Outward traveling spherical wave Solution: E (r , t ) c (r,,) r 2 E 1 2 E 2 0 r r r r t 1 2 E E 2 0 r r r r t z x Inward traveling spherical wave 1 1 f (t r ) c f (t r ) r r General Solution: Point Source E (r , t ) c 1 1 1 r f (t r ) c f (t ) r r c m c sec point source Wave speed m c 3 10 o o sec 4 107 8.85 1012 Same as the speed of light! (r,,) r In free space: 1 z 1 8 y General Solution Case: Time Harmonic Rectangular Coordinates ~ ~ 2 E 2 E 0 ~ ~ 2 E 2 E 0 Wave Number ~ ~ ~ 2E 2E 2E 2 ~ E 0 2 2 2 x y z 2 Ex 2 Ex 2 Ex 2 Ex 0 2 2 2 x y z 2Ey x 2 2Ey y 2 2Ey z 2 2 Ey 0 2 Ez 2 Ez 2 Ez 2 Ez 0 2 2 2 x y z Separation of Variable Solutions 2 Ex 2 Ex 2 Ex 2 Ex 0 2 2 2 x y z Assume Solution of the form: Ex ( x, y, z) f ( x) g ( y)h( z) f ( x) g ( y)h( z ) f ( x) g( y)h( z ) f ( x) g ( y)h( z ) 2 f ( x) g ( y)h( z ) 0 1 [ f ( x) g ( y)h( z ) f ( x) g ( y)h( z ) f ( x) g ( y)h( z ) 2 f ( x) g ( y)h( z )] 0 f ( x ) g ( y ) h( z ) constant f ( x) g ( y) h( z ) 2 0 f ( x ) g ( y ) h( z ) function of x function of y function of z Separation of Variable Solutions constant f ( x) g ( y) h( z ) 2 0 f ( x ) g ( y ) h( z ) function of x f ( x) 2 x f ( x) g ( y ) y2 g ( y) h( z ) z2 h( z ) 2 x2 y2 z2 function of y function of z f ( x) x f ( x) 0 2 g ( y ) y 2 g ( y ) 0 2 h( z ) z h( z ) 0 2 x2 y2 z2 Separation of Variable Solutions f ( x) x f ( x) 0 2 g ( y ) y 2 g ( y ) 0 2 h( z ) z h( z ) 0 2 x2 y2 z2 Solutions: f ( x) A1e j x x B1e j x x g ( y ) A2 e j y y B2 e j y y h( z ) A3 e j z z B3 e j z z purely real Traveling and standing waves A1e j x x B1e j x x or C1 cos( x x ) D1 sin( x x ) purely imaginary Evanesent waves A1e x x B1e complex Exponentially modulated traveling wave A1e xe j x x B1e x e j x x or x j x x A1e e B1e x e j x x Separation of Variable Solutions: Examples case a. x, y, z all real (forward traveling waves) Ex ( x, y, z ) f ( x) g ( y)h( z ) Exo e j x xe j y y j z z e Plane Waves case b. xreal (forward traveling wave), x(real standing wave), z imaginary (evanesent wave) Ex ( x, y, z ) f ( x) g ( y )h( z ) Exo e j x x (C1 cos( y y ) D1 sin( y y ))e z z y x Surface Waves Separation of Variable Solutions: Examples case c. xreal (forward standing wave), x(real standing wave), z real (traveling wave) Guided Waves E x ( x, y, z ) E xo e j z z ( A1 cos( x x) B1 sin( x x))(C1 cos( y y ) D1 sin( y y )) E y ( x, y, z ) E yo e j z z ( A1 cos( x x) B1 sin( x x))(C1 cos( y y ) D1 sin( y y )) E z ( x, y, z ) E zo e j z z ( A1 cos( x x) B1 sin( x x))(C1 cos( y y ) D1 sin( y y )) Unknown constants A1, B1, C1 , D1, x, y, z Found by applying boundary conditions and dispersion relation. Namely: y E x ( x, y h / 2, z ) 0 E y ( x b / 2, y, z ) 0 E z ( x b / 2, y h / 2, z ) 0 x y z 2 2 2 2 2 h x , PEC Walls z b Stay tuned we will solve the complete solution for modes in a rectangular waveguide in a later lecture.