Download Law of Sines - BakerMath.org

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Inverse Trig Functions
Law of the Sines
1
2
3
Notation
Inverse Trig Functions, Law of the
Sines & Requirements
Practice Problems
Notation
2

New variables for angles
 Alpha
 Beta



 Gamma
 Theta

Inverse Trig Functions
3

Arcsine
 sin-1

Arc-cosine
 cos-1

Arctangent
 tan-1
Inverse Trig Functions(Cont.)
4

Reverse the trig function process, where:
opp
sin  
hyp
adj
cos  
hyp
opp
tan  
adj
the arc functions provide for:
 opp 
  
sin 
 hyp 
1
1  adj 
  
cos 
 hyp 
 opp 
  
tan 
 adj 
1
Inverse Trig Functions Example
5

Solve
sin  
3
2
to the nearest degree:
3
sin  
2
 3
sin 
  
 2 
1
60  
Area of a Triangle
6
1
area  bc sin 
2
1
area  ac sin 
2
1
area  ab sin 
2
Area of a Triangle Example
7

Find the area of the triangle given B=85˚, c=23 ft.,
and a=50 ft. to the nearest tenth.
1
area  ac sin B
2
1
area  (50 ft.)(23 ft.) sin 85
2
area  572.8 ft
2
Law of the Sines
8
Law of the Sines
9

Requirements
 Two
sides and an angle opposite to one of them
 SSA
 Two
angles and any side
 AAS
 If
or ASA
these conditions are not met, the problem cannot be
solved with the Law of the Sines
Example
10
  180  57  48  75
sin  sin 

a
b
sin 48 sin 75

a
47
47sin 48
a
sin 75
 36.2
Example (Cont.)
11
sin  sin 

c
b
sin 57 sin 75

c
47
47 sin 57
c
sin 75
 40.8
Tips
12

Check your calculator settings
 Make
sure you are in degree mode when working with
degrees and in radian mode when working with
radians!!!!


Remember the sum of all angles in a triangle is 180
degrees or pi radians
Not all problems can be solved with the Law of
Sines
Related documents