Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Efi Shahmoon, Igor Mazets, Gershon Kurizki Taipei L1 Outline - “Transmitting” vacuum forces: Giant vdW/Casimir via transmission lines - Long-range dipolar interactions in fiber-grating Deterministic excitation transfer ( entanglement) Laser-induced forces Highly nonlocal NL optics: EIT + dipolar forces Geometry dependence of vacuum forces Point dipoles: vacuum fluctuations + scattering - quasistatic (vdW) r dipole : U 1 / r 6 - retarded (Casimir-Polder) Dielectric/metallic mirrors: Esc r dipole : U 1 / r 7 U 1/ d 1 3 Key point: interaction via virtual-photons 2 Evac Evac 1 d (from vacuum) v. photons propagation & scattering space dependence object geometry environment geometry Our approach: objects: dipoles (vdW), environment: 1d space! Giant vdW & Casimir in 1d 2 1. Giant vdW/Casimir Transmission Lines TL Geometries: (a) Coaxial cable (b) coplanar waveguide microstrips, … a f co 1 / a Transverse modes: TEM + other modes with cutoffs (e.g. TEmn TM mn for coax) TEM mode 1d photon vacuum modes! Dispersion: k c k Mode function: u k ( r ) TEM mode “free space” in 1d e ikz A( x, y ) L 1. Giant vdW/Casimir Analytical approaches Shahmoon, Mazets & Kurizki, PNAS 111, 10485 (2014) z TEM-mediated vdW/Casimir a~ 1. QED perturbation theory D. Craig & T. Thirunamachandran, “Molecular QED” (1984) 2. Scattering of vac. fluctuations P. Milonni, “The Quantum Vacuum” (1994) Spruch & Kelsey, PRA (1978) 1. Giant vdW/Casimir Interaction energy mediated by TEM mode Both analytical approaches yield identical results e dipole: e Ee g obtain: U ( z) vdW regime: F ( z ) 16 1 a 4 e 2 hc Ee F ( z / e ) z e z ln e e z z a~ U fs 1/ z6 Casimir-Polder (retarded) regime: z e 1 e F ( z) 8 3 z 3 3 U fs 1/ z7 Shahmoon, Mazets & Kurizki, PNAS 111, 10485 (2014) 1. Giant vdW/Casimir Comparison with free-space result - TEM-mediated energy: - free-space counterpart: - For a 10 4 e from vdW regime U U fs U ~ const. z ln z (e.g. circuit QED) z 10 3 e : z / e Giant enhancement w.r.t free-space Free-space regime: z a z Casimir-Polder regime U ~ 1/ z3 a~ - include transverse mode other then TEM - Free-space result is restored (e.g. TEmn TM mn (numerically verified for coax & metal waveguide) E. Shahmoon, & G. Kurizki, PRA 87, 062105 (2013) Shahmoon, Mazets & Kurizki, PNAS 111, 10485 (2014) 1. Giant vdW/Casimir Possible realization: Circuit QED TL: superconducting coplanar waveguide Dipole: superconducting qubit/“transmon” z a ~ 5m Measurement of interaction energy for a single pair of dipoles! Observable: energy shift of dipole level Typical parameters [1-3]: Ee 2GHz d/ A 1.35 10 -19 C deph 0.05MHz vdW limit z 0.01e 1.5mm U 28MHz (level width) [1] Shahmoon, Mazets & Kurizki, PNAS (2014) [2] Baur et al. Phys. Rev. Lett. 108, 040502 (2012) [3] Stojanovi’c et al. Phys. Rev. B 85, 05404 (2012) U deph detectable! Wallraff (ETH) Casimir-Polder regime z 2e 30cm U 6.62 KHz U deph very challenging (with present tech.) 2. Long-range DDI Coherent dipole-dipole interaction (DDI) “incoherent” interaction atom 1 spontaneously emits photon to atom 2 - dissipative atoms Im G g1 - probabilistic excitation exchange - non-conservative forces (via scattering) diffusion sin kr - scaling: 3d: 1d: cos kz r e1 e2 g2 “coherent” interaction via evanescent/“near” fields, virtual photons - dispersive atoms Re G - deterministic (Hamiltonian) excitation exchange H DD (ˆ ,1ˆ , 2 h.c.) - conservative forces (potentials) - scaling: 3d: 1 cos kr ; r3 r 0’ Dell, Giovanazzi, GK, PRL (00’, 02’) 1d: sin k z Goal: coherent & long-range interaction 1 2 2. Long-range DDI Long-range coherent interactions via fiber-grating Fiber-grating (FG) = 1d photonic crystal bandgap density k of states (=DOS) u d bandgap DDI & scat. for atom inside gap: 1 0.4 atomu 2 ( ) 4 6 8 10 k 1 1 v group ( / u ) 1 , free exp( z / ) 1 1 atom / u (due to DOS) free Applications: 0.6 0.2 k 2 Close to bandgap edge: 0.8 atom u 1. strong: 1 1. Excitation exchange long-range deterministic entanglement 2. Laser-induced inter-atomic force non-extensive thermodyn. 2. long-range: 1 Shahmoon & Kurizki, PRA 87, 033831 (2013) Shahmoon & Kurizki, PRA 89, 043419 (2014) Douglas et al. Nature Photon. (2015) Shahmoon, Mazets & Kurizki, Opt. Lett. (2014) 2. Long-range DDI DD interaction: non-Markovian theory The theory: *Schrodinger Eq. for 2 atoms+waveguide vacuum *Solved using Laplace transform excited-level lifetime Fixed distance z, a near cutoff: 11 - interaction strength gets larger (divergence) - population loss (incomplete decay) less entanglement co / 11 500 a / 11 490 z a 1 in free-space H DD (ˆ ,1ˆ , 2 h.c.) 1 1 (a / co ) 2 2. Long-range DDI Inter-atomic forces: laser-induced DDI (LI-DDI) LIDDI [1]: U12 ~ I L1 2 Re[G ( L , r )] EL 1 Examples: Free-space [2] Re G ~ cos(k L r ) / r Fiber-mediated [3] Re G ~ sin(k L | z |) long-range interaction! EL 2 (1) Esc G ( L , r ) photon Green’s function tapered-fiber (Rauschenbeutel, Kimble) hollow-fiber (Lukin, Gaeta) Problem: spontaneous emission/scattering (e.g. Rayleigh) diffusion 1 Rsc ~ I L 2 Im G 2 Esc Esc (real ) (vir ) can have U12 Rsc ? ? [2] O’Dell, Giovanazzi, Kurizki & Akulin, PRL (2000) [1] ES & Kurizki, PRA 89, 043419 (2014) [3] Chang, Cirac & Kimble, PRL 110, 113606 (2013) 3. Highly nonlocal NLO EIT + DDI (dipolar int.) = nonlocal NLO NLO=nonlinear optics Fleischhauer & Lukin (2002) photon E-field E e Atom excitation gd g d g-d spin wave dipolar interaction of atoms interaction of photons E d g U ( z z ' ) dd ( z ) dd ( z ' ) U ( z z' )I ( z)I ( z' ) (for atoms in state d) (I=intensity) Friedler, Petrosyan, Kurizki & Fleischhauer (PRA 2005) NL optics with EIT: nonlocal Kerr effect H NL d z dz U ' ( z z' ) E( z) E( z' ) 2 implications: d Rydberg U (z ) Extremely Strong NLO 2 Lukin (Harvard), Firstenberg (WIS) Adams, Hofferberth, Rempe,… In fibers: et al. (PRA 83, 2011) U ( z ) modified long-range DDI interactions? Extremely nonlocal NLO Shahmoon, Grisins, Stimming, Mazets & Kurizki, arXiv:1412.8331; Optica 3, 725 (2016) 3. Highly nonlocal NLO Proposed scheme 1. Laser-induced DDI potential between atoms in 2. Use level d in an EIT scheme Nonlinear level shift and detuning: na atom density Pd (z ) occupation of level d for atom at z d 3. Highly nonlocal NLO Resulting nonlocal nonlinear propagation What propagates in the EIT medium? EIT polariton = superposition of light and spin waves Resulting propagation: wave frequency shift - linear shift - nonlinear shift (SPM) dispersion (“mass”) resulting from freq. shift Nonlocal nonlinear shift: Nonlocal + nonlinear dispersion New regime of nonlinear optics! Optica 3, 725 (2016) Origin of nonlinear dispersion frequency shift 3. Highly nonlocal NLO resulting from freq. shift Quadratic dispersion of probe appears for C 0 : 3. Highly nonlocal NLO Predictions (1): optical roton Long-range interaction via nano-waveguide + grating: U ( z ) cos(k L z ) cos( z )e z / ~ 3000L Dispersion relation of wave excitations about a CW (Bogoliubov): n p Photon density of CW U k FT [U ( z )] quadratic dispersion: c 0 : optical “anti-roton” c 0 : optical roton blue: long-range int. red: local int. roton extrema at k R k L / spatial ordering at 2 / k R ! 3. Highly nonlocal NLO Predictions (2): emergence of spatial self-order Instability: imaginary dispersion peaked at k R k L / pair generation: peaked around k R emergence of order in field intensity with period ~ 2 / k R I ( z / v) delta-corr. field local vs. nonlocal L photon detector g ( 2) ~ I ( z / v) I ( z ' / v) Green: intensity corr. at waveguide output Other colors: intensity corr. at different stages t during propagation in waveguide 3. Highly nonlocal NLO Instability: spectrum ES, Grisins, Stimming, Mazets & Kurizki (in preparation) Im. part of Bogoliubov spectrum Mode occupation N k ak ak Squeezing spectrum 3. Highly nonlocal NLO Measuring the optical roton spectra ES, Grisins, Stimming, Mazets & Kurizki (in preparation) U k FT [U ( z )] n p Photon density of CW optical “anti-roton” homodyne detection 2. Long-range DDI Many-body physics with long-range interactions E1 U ij 2 1 ij1 E2 U ij ij2 interaction/”surface” energy total energy Etot U ij short-range int. long-range int. Etot E1 E2 E12 ij E12 E1 , E2 E12 ~ E1 , E2 Long-range interactions: E12 U i1, j2 ij Etot E1 E2 Etot E1 E2 non-additive! drU (r) V V Stat. physics + long range int. (=Non-additive sys.) New concepts & predictions: - inequivalence of stat. ensembles No (controlled) experiments! - Negative specific heat - Breaking of ergodicity Mukamel, arXiv: 0905.1457 Campa, Dauxois & Ruffo, Phys. Rep. (2009) Summary g1 - Dipolar interactions in confined geometries Confined geometries modify modes enhance dipolar int. e2 k e1 uk (r ) mode g 2 function simple idea, drastic consequences! Esc G (k , r ) (1) 1. Transmission lines: z a TEM “1d”-mode Giant Casimir effects in 1d realization: circuit QED 2. Cutoffs & gaps in photon DOS a enhanced dispersive int. ; inhibited dissipative effects - Long-range deterministic entanglement generation - Long-range laser-induced forces: nonlocal NL optics, non-extensive thermo. 3. Highly nonlocal NLO Imperfections & scattering 1. Scattering Rsc due to laser-induced DDI U Bandgap: scat. only to non-guided weak! U Rsc Rsc 1 Rsc U Rsc 2. Scattering from defects in WG RD L C 10 U C 4 ~ 3000L RD ~ U k ~ n pU Douglas et al. Nature Photon. (2015) single-atom effect but our observable k is cooperative! 3. EIT absorption 2 1 1 atom / u 1. Giant vdW/Casimir Analytical approaches ES, I. Mazets & G. Kurizki, arXiv: 1304:2028 (2013) 1. QED perturbation theory 2. Scattering of vac. fluctuations 4th order energy correction for G g1, g2 , vac : z a~ (1d ) (1) Uˆ 2 Eˆ vac ( z2 ) Eˆ sc ( z2 ) Find scattered field in 1d (TEM): (1) Eˆ ( z ) sc Dipole model: n g Vacuum modes: TEM u k e ikz D. Craig & T. Thirunamachandran, “Molecular QED” (1984) 2 Averaging over vacuum: U vac Uˆ vac P. Milonni, “The Quantum Vacuum” (1994) Theory QED Hamiltonian TEM-mediated interaction energy de dipole matrix element 1. Giant vdW/Casimir 2. Long-range DDI Energy transfer: deterministic entanglement Realization: nano-waveguide + Bragg grating 1. In bandgap: incoherent radiation to non-guided modes ~ free 2. @ bandgap edge: v group 0 free 1 (a / u ) atoms: a 780nm free 2 6.07 MHz u / free 10 8 u d 0.6 0.2 k a u 2 4 6 8 10 z 20a ~ 16 m 0.6 C 0.9663 0.4 0.2 0 0 bandgap 0.8 0.4 / 0.8 a / free 108 2000 1 k v g bandgap 1 |e population Rb free strong 1 long-distance 1 (a / u ) 87 tent ~ 1.8ns 0.05 0.1 t 0.15 0.2 Rauschenbeutel, Kimble ES & Kurizki, PRA 87, 033831 (2013) See also works by Darrick Chang 2. Long-range DDI Mapping to 2d spin (XY) model LI-DDI for may-atoms( size ) : U12 cos[4 ( z1 z 2 ) / L ] atom position 2d spin orientation L / 2 L / 2 L / 2 i 2 zi L / 2 ordered state z known spin (XY) model! slow relaxation in -canonical [*] c (1 / 9)N 1.7 ~ system size! never observed! ES, Mazets & Kurizki, Opt. Lett. 39, 3674 (2014) [*] Yamaguchi et al., Physica A 337, 36 (2004) 2. Long-range DDI Battle of relaxations .. . U Dynamics: i A i Af i i -canonical (slow) relaxation via: atomic “collisions” (LI-DDI) vs. to: equilibrium determined by sys. initial state time: c ( N ) 1 N 1.7~ system size! 9 For Cs atoms: 1 2 Rsc U Rsc canonical relaxation via: photon scattering to: equilibrium determined by D effective T time: c 1 Teff m c ( N ) c Can experimentally probe slow relaxation! Probe this ensemb. inequivalence Probe many-body effect of long-range int.! ES, Mazets & Kurizki, Opt. Lett. 39, 3674 (2014) 2. Long-range DDI Mapping to spin model ES, Mazets & Kurizki, arXiv:1309.0555 (2013) - LIDDI + kinetic energy lead to ( z ) : U12 I L 2 cos 2 ( k L z )e z / Rsc zi , pi & m position, momentum & mass of atom i L laser wavelength 1.7 known XY model! slow relaxation in -canonical [1] c (1 / 9)N in our case: BUT: m L J 4 - Scattering friction + diffusion = effective bath canonical ensemble… Dynamics= XY model H + friction i + diffusion D (Langevin): 4 H 4 fi mL i mL [1] Yamaguchi et al., Physica A 337, 36 (2004) f i (t ) f j (t ' ) 2 D ij (t t ' ) & D : see Cohen-Tannoudji free