Download Long-Range Interactions and Entanglement

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Efi Shahmoon, Igor Mazets, Gershon Kurizki
Taipei L1
Outline
- “Transmitting” vacuum forces:
Giant vdW/Casimir via transmission lines
- Long-range dipolar interactions in fiber-grating
Deterministic excitation transfer ( entanglement)
Laser-induced forces
 Highly nonlocal NL optics: EIT + dipolar forces
Geometry dependence of vacuum forces
Point dipoles: vacuum fluctuations + scattering
- quasistatic (vdW)
r  dipole : U  1 / r 6
- retarded (Casimir-Polder)
Dielectric/metallic mirrors:
Esc
r  dipole : U  1 / r 7
U  1/ d
1
3
Key point: interaction via virtual-photons
2 Evac
Evac 1
d
(from vacuum)
 v. photons propagation & scattering  space dependence
object geometry
environment geometry
Our approach: objects: dipoles (vdW), environment: 1d space!
Giant vdW & Casimir in 1d
2
1. Giant vdW/Casimir
Transmission Lines
TL Geometries:
(a) Coaxial cable
(b) coplanar waveguide
microstrips, …
a
f co  1 / a
Transverse modes: TEM + other modes with cutoffs
(e.g.
TEmn TM mn
for coax)
TEM mode  1d photon vacuum modes!
Dispersion:
k  c k
Mode function: u k ( r ) 
TEM mode  “free space” in 1d
e ikz
A( x, y ) L
1. Giant vdW/Casimir
Analytical approaches
Shahmoon, Mazets & Kurizki, PNAS 111, 10485 (2014)
z
TEM-mediated vdW/Casimir
a~
1. QED perturbation theory
D. Craig & T. Thirunamachandran, “Molecular QED” (1984)
2. Scattering of vac. fluctuations
P. Milonni, “The Quantum Vacuum” (1994)
Spruch & Kelsey, PRA (1978)
1. Giant vdW/Casimir
Interaction energy mediated by TEM mode
Both analytical approaches yield identical results
e
dipole:
e 
Ee
g
obtain:
U ( z) 
vdW regime:
F ( z )    16
1
a 4 e
2
hc
Ee
F ( z / e )
z  e
 z
ln
e  e
z
z
a~



U
fs
 1/ z6

Casimir-Polder (retarded) regime: z  e
1 e
F ( z) 
8 3 z 3
3
U
fs
 1/ z7

Shahmoon, Mazets & Kurizki, PNAS 111, 10485 (2014)
1. Giant vdW/Casimir
Comparison with free-space result
- TEM-mediated energy:
- free-space counterpart:
-
For
a  10 4 e
from
vdW regime
U
U fs
U ~ const.  z ln z
(e.g. circuit QED)
z  10 3 e :
z / e
Giant enhancement
w.r.t free-space
Free-space regime:
z  a
z
Casimir-Polder regime
U ~ 1/ z3
a~
- include transverse mode other then TEM
- Free-space result is restored
(e.g.
TEmn TM mn
(numerically verified for coax & metal waveguide)
E. Shahmoon, & G. Kurizki, PRA 87, 062105 (2013)
Shahmoon, Mazets & Kurizki, PNAS 111, 10485 (2014)
1. Giant vdW/Casimir
Possible realization: Circuit QED
TL: superconducting coplanar waveguide
Dipole: superconducting qubit/“transmon”
z
a ~ 5m
Measurement of interaction energy for a single pair of dipoles!
Observable: energy shift of dipole level
Typical parameters [1-3]:
Ee  2GHz
d/
A  1.35  10 -19 C
deph  0.05MHz
vdW limit
z  0.01e  1.5mm
U  28MHz
(level width)
[1] Shahmoon, Mazets & Kurizki, PNAS (2014)
[2] Baur et al. Phys. Rev. Lett. 108, 040502 (2012)
[3] Stojanovi’c et al. Phys. Rev. B 85, 05404 (2012)
U  deph
detectable!
Wallraff (ETH)
Casimir-Polder regime
z  2e  30cm
U  6.62 KHz
U  deph
very challenging
(with present tech.)
2. Long-range DDI
Coherent dipole-dipole interaction (DDI)
“incoherent” interaction atom 1 spontaneously emits photon to atom 2
- dissipative
atoms  
  Im G
g1
- probabilistic excitation exchange
- non-conservative forces (via scattering) diffusion
sin kr
- scaling: 3d:
1d: cos kz
r
e1
e2

g2
“coherent” interaction via evanescent/“near” fields, virtual photons
- dispersive
atoms  
  Re G
- deterministic (Hamiltonian) excitation exchange
H DD  (ˆ  ,1ˆ , 2  h.c.)
- conservative forces (potentials)
- scaling: 3d:
1 cos kr
;
r3
r

0’ Dell, Giovanazzi, GK, PRL (00’, 02’)
1d: sin k z
Goal: coherent & long-range interaction
1
  
2

2. Long-range DDI
Long-range coherent interactions via fiber-grating
Fiber-grating (FG) = 1d photonic crystal
bandgap
density k
of states 
(=DOS)

u
d
bandgap

DDI & scat. for  atom inside gap:
1
0.4
atomu
2

 ( ) 
4
6
8
10

k
1
1


 v group
( / u )  1
, 
   free exp( z /  )
1
1  atom / u
(due to DOS)
   free
Applications:
0.6
0.2
k
2
Close to bandgap edge:
0.8
atom  u
1. strong:
  1
  
1. Excitation exchange  long-range deterministic entanglement
2. Laser-induced inter-atomic force  non-extensive thermodyn.
2. long-range:
  1
Shahmoon & Kurizki, PRA 87, 033831 (2013)
Shahmoon & Kurizki, PRA 89, 043419 (2014)
Douglas et al. Nature Photon. (2015)
Shahmoon, Mazets & Kurizki, Opt. Lett. (2014)
2. Long-range DDI
DD interaction: non-Markovian theory
The theory: *Schrodinger Eq. for 2 atoms+waveguide vacuum
*Solved using Laplace transform
excited-level lifetime
Fixed distance z, a near cutoff:
11 
- interaction strength gets larger (divergence)
- population loss (incomplete decay)  less entanglement
co / 11  500 a / 11  490 z  a
1
in free-space
H DD  (ˆ  ,1ˆ , 2  h.c.)

1
1  (a / co ) 2
2. Long-range DDI
Inter-atomic forces: laser-induced DDI (LI-DDI)
LIDDI [1]:
U12 ~ I L1 2 Re[G ( L , r )]  
EL
1
Examples:
Free-space [2]
Re G ~ cos(k L r ) / r
Fiber-mediated [3]
Re G ~ sin(k L | z |)
 long-range interaction!
EL
2
(1)
Esc  G ( L , r )
photon Green’s function
tapered-fiber
(Rauschenbeutel, Kimble)
hollow-fiber
(Lukin, Gaeta)
Problem: spontaneous emission/scattering (e.g. Rayleigh)  diffusion
1
Rsc ~ I L 2 Im G  
2
Esc
Esc
(real )
(vir )
can have
U12  Rsc ?
   ?
[2] O’Dell, Giovanazzi, Kurizki & Akulin, PRL (2000)
[1] ES & Kurizki, PRA 89, 043419 (2014) [3] Chang, Cirac & Kimble, PRL 110, 113606 (2013)
3. Highly nonlocal NLO
EIT + DDI (dipolar int.) = nonlocal NLO
NLO=nonlinear optics
Fleischhauer & Lukin (2002)
photon
E-field
E
e
Atom excitation
 gd  g d g-d spin wave
dipolar interaction of atoms
interaction of photons

E
d
g
U ( z  z ' ) dd ( z ) dd ( z ' )
U ( z  z' )I ( z)I ( z' )
(for atoms in state d)
(I=intensity)
Friedler, Petrosyan,
Kurizki & Fleischhauer
(PRA 2005)
 NL optics with EIT: nonlocal Kerr effect
H NL   d z  dz U
' ( z  z' ) E( z) E( z' )
2
implications:
d  Rydberg U (z )  Extremely Strong NLO
2
Lukin (Harvard), Firstenberg (WIS)
Adams, Hofferberth, Rempe,…
In fibers: et al. (PRA 83, 2011)
U ( z )  modified long-range DDI interactions?
 Extremely nonlocal NLO
Shahmoon, Grisins, Stimming, Mazets & Kurizki,
arXiv:1412.8331;
Optica 3, 725 (2016)
3. Highly nonlocal NLO
Proposed scheme
1. Laser-induced DDI potential between atoms in
2. Use level
d
in an EIT scheme
 Nonlinear level shift and detuning:
na  atom density
Pd (z )  occupation of level d for atom at z
d
3. Highly nonlocal NLO
Resulting nonlocal nonlinear propagation
What propagates in the EIT medium?
EIT polariton = superposition of light and spin waves
Resulting propagation:

wave
frequency shift
- linear shift
- nonlinear shift (SPM)
dispersion (“mass”)
resulting from freq. shift
Nonlocal nonlinear shift:
Nonlocal + nonlinear dispersion 
 New regime of nonlinear optics!
Optica 3, 725 (2016)
Origin of nonlinear dispersion
frequency shift
3. Highly nonlocal NLO

 resulting from freq. shift
Quadratic dispersion of probe appears for  C  0 :
3. Highly nonlocal NLO
Predictions (1): optical roton
Long-range interaction via nano-waveguide + grating:
U ( z )   cos(k L z ) cos(


z )e  z / 
 ~ 3000L
Dispersion relation of wave excitations about a CW (Bogoliubov):
n p  Photon density of CW
U k  FT [U ( z )]
quadratic dispersion:
 c  0 : optical “anti-roton”
 c  0 : optical roton
blue: long-range int.
red: local int.
roton extrema at k R  k L   /   spatial ordering at 2 / k R !
3. Highly nonlocal NLO
Predictions (2): emergence of spatial self-order
Instability: imaginary dispersion peaked at k R  k L   / 
 pair generation: peaked around  k R
 emergence of order in field intensity with period ~ 2 / k R
I ( z / v)
delta-corr. field
local vs. nonlocal
L
photon detector
g ( 2) ~ I ( z / v) I ( z ' / v)
Green: intensity corr. at waveguide output
Other colors: intensity corr. at different stages t during propagation in waveguide
3. Highly nonlocal NLO
Instability: spectrum
ES, Grisins, Stimming, Mazets & Kurizki (in preparation)
Im. part of Bogoliubov spectrum
Mode occupation
N k  ak ak
Squeezing spectrum
3. Highly nonlocal NLO
Measuring the optical roton spectra
ES, Grisins, Stimming, Mazets & Kurizki (in preparation)
U k  FT [U ( z )]
n p  Photon density of CW
optical “anti-roton”
homodyne detection
2. Long-range DDI
Many-body physics with long-range interactions
E1   U ij
2
1
ij1
E2   U ij
ij2
interaction/”surface” energy
total energy
Etot   U ij
short-range int.
long-range int.
Etot  E1  E2  E12
ij
E12  E1 , E2
E12 ~ E1 , E2
Long-range interactions:
E12 
U
i1, j2
ij
Etot  E1  E2
Etot  E1  E2 non-additive!
 drU (r)  V
V
Stat. physics + long range int. (=Non-additive sys.)
 New concepts & predictions: - inequivalence of stat. ensembles
No (controlled) experiments!
- Negative specific heat
- Breaking of ergodicity
Mukamel, arXiv: 0905.1457
Campa, Dauxois & Ruffo, Phys. Rep. (2009)
Summary
g1
- Dipolar interactions in confined geometries
Confined geometries  modify modes  enhance dipolar int.
e2
k
e1
uk (r )
mode
g 2 function
simple idea, drastic consequences!
Esc  G (k , r )
(1)
1. Transmission lines: z  a  TEM “1d”-mode
 Giant Casimir effects in 1d  realization: circuit QED
2. Cutoffs & gaps in photon DOS
a
 enhanced dispersive int. ; inhibited dissipative effects
- Long-range deterministic entanglement generation
- Long-range laser-induced forces: nonlocal NL optics, non-extensive thermo.
3. Highly nonlocal NLO
Imperfections & scattering
1. Scattering
Rsc
due to laser-induced DDI
U
Bandgap: scat. only to non-guided  weak!
U  Rsc  Rsc
1
Rsc U  Rsc
2. Scattering from defects in WG
RD 
L
C  10

U
C
4
 ~ 3000L  RD ~ U
k ~ n pU

Douglas et al. Nature Photon. (2015)
single-atom effect
but our observable k is cooperative!
3. EIT absorption
2
1
1   atom / u
1. Giant vdW/Casimir
Analytical approaches
ES, I. Mazets & G. Kurizki, arXiv: 1304:2028 (2013)
1. QED perturbation theory
2. Scattering of vac. fluctuations
4th order energy correction for
G  g1, g2 , vac :
z
a~
(1d )
(1)
Uˆ   2 Eˆ vac ( z2 ) Eˆ sc ( z2 )
Find scattered field in 1d (TEM):
(1)
Eˆ ( z )
sc
Dipole model:
n 
g
Vacuum modes: TEM u k  e ikz
D. Craig & T. Thirunamachandran, “Molecular QED” (1984)
2
Averaging over vacuum:
U  vac Uˆ vac
P. Milonni, “The Quantum Vacuum” (1994)
Theory
QED Hamiltonian
TEM-mediated interaction energy
de 
dipole matrix element
1. Giant vdW/Casimir
2. Long-range DDI
Energy transfer: deterministic entanglement
Realization: nano-waveguide + Bragg grating
1. In bandgap: incoherent radiation to non-guided modes ~  free
2. @ bandgap edge: v group  0
 free

1  (a / u )
atoms:
a  780nm
 free  2  6.07
MHz
u /  free  10
8
u
d
0.6
0.2
k
 a u
2
4
6
8
10

z  20a
~ 16 m
0.6
C  0.9663
0.4
0.2
0
0
bandgap
0.8
0.4
 /
0.8
a /  free  108  2000
1 k

v g 
bandgap
1
|e population
Rb
  free strong
1
long-distance
1  (a / u )

87

tent ~ 1.8ns
0.05
0.1
t
0.15
0.2
Rauschenbeutel, Kimble
ES & Kurizki, PRA 87, 033831 (2013)
See also works by Darrick Chang
2. Long-range DDI
Mapping to 2d spin (XY) model
LI-DDI for may-atoms( size   ) : U12   cos[4 ( z1  z 2 ) / L ]
atom position
2d spin orientation
L / 2 L / 2 L / 2
 i  2
zi
L / 2
ordered state
z
 known spin (XY) model!
 slow relaxation in -canonical [*]
 c  (1 / 9)N 1.7
~ system size!
never observed!
ES, Mazets & Kurizki, Opt. Lett. 39, 3674 (2014)
[*] Yamaguchi et al., Physica A 337, 36 (2004)
2. Long-range DDI
Battle of relaxations
..
.
U
Dynamics:
i   A
  i  Af i
 i
-canonical (slow) relaxation
via: atomic “collisions” (LI-DDI)
vs.
to: equilibrium determined
by sys. initial state
time:  c ( N )  1 N 1.7~ system size!
9
For Cs atoms:
1
2
Rsc U  Rsc
canonical relaxation
via: photon scattering
to: equilibrium determined by
D
effective T
time:  c   1
Teff 
m
 c ( N )   c
 Can experimentally probe slow
relaxation!
 Probe this ensemb. inequivalence
Probe many-body effect
of long-range int.!
ES, Mazets & Kurizki, Opt. Lett. 39, 3674 (2014)
2. Long-range DDI
Mapping to spin model
ES, Mazets & Kurizki, arXiv:1309.0555 (2013)
- LIDDI + kinetic energy lead to ( z   ) :
U12  I L 2 cos 2 ( k L z )e  z / 
Rsc
zi , pi & m  position, momentum & mass of atom i
L  laser wavelength
1.7
 known XY model!  slow relaxation in -canonical [1]  c  (1 / 9)N
in our case:  
BUT:
m L
J 4
- Scattering  friction + diffusion = effective bath  canonical ensemble…
 Dynamics= XY model H + friction
i  
 + diffusion D (Langevin):
4 H
4
  
fi
mL  i
mL
[1] Yamaguchi et al., Physica A 337, 36 (2004)
f i (t ) f j (t ' )  2 D ij (t  t ' )
 & D : see Cohen-Tannoudji
free
Related documents