Download Chapter 30

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Chapter 32
Oscillators
Basics of Feedback
• Block diagram of
feedback amplifier
v
• Forward gain, A
• Feedback, B
• Summing junction, ∑
• Useful for oscillators
+
in
∑
A
-
vout
vF
B
2
Basics of Feedback
• Op-amps
– Inverting & non-inverting
– Negative feedback 180°out of phase w/input
– High input impedance
– Low output impedance
– Wide bandwidth
– Stable operation
3
Basics of Feedback
• Oscillators
– Positive feedback
– In-phase with input
– Unstable
4
Basics of Feedback
• Block diagram analysis
ve  vin  v f
vout  A(vin  v f )
v f  Bvout
vout
A

vin 1  AB
+
vin
∑
ve
A
-
vout
vf
B
5
Basics of Feedback
ve  vin  vf
• Inverting amplifier
vout  A vin  vf 
vf  Bvout
+
vin
∑
ve
A
vf
B
vout
vout
A

vin
1  AB
vout
1
1


1
vin
B B
A
R
B 1
RF
6
Relaxation Oscillator
• Square wave generator
• Composed of
– Schmitt trigger comparator
– Positive feedback
– RC circuit to determine period
7
Relaxation Oscillator
• Schmitt Trigger
– R1 and R2 form a voltage divider
– Portion of output applied at + input
– Hysteresis: output dependent on input and
previous value of input
8
Relaxation Oscillator
• Schmitt Trigger
– Hysteresis: upper and lower trip points
– Can use a voltage follower for adjustable trip
points
9
Relaxation Oscillator
• Schmitt trigger
10
Relaxation Oscillator
• Schmitt Trigger
Relaxation
Oscillator
11
Relaxation Oscillator
• R1 and R2 voltage divider
VREF
R2

 VSAT 
R1  R2
• Capacitor charges through RF
• VC < +VSAT then C charges toward +VSAT
• VC > –VSAT then C charges toward –VSAT
12
Relaxation Oscillator
• Schmitt Trigger Relaxation Oscillator
Equations
  RF C

vC (t )  VF  VO  1  e
t
 RC

 2 R2 
T  2 RF C ln 1 

R1 

13
Wien Bridge Oscillator
• For a sinusoidal oscillator output
– Closed loop gain ≥ 1
– Phase shift between input and output = 0° at
frequency of oscillation
• With these conditions a circuit
– Oscillates with no external input
• Positive feedback = regenerative feedback
14
Wien Bridge Oscillator
• Regenerative oscillator
– Initial input is small noise voltage
– Builds to steady state oscillation
• Wien Bridge oscillator
– Positive feedback, RC network branch
– Resistor branch establish amplifier gain
15
Wien Bridge Oscillator
• Circuit
16
Wien Bridge Oscillator
• Equations
1
f0 
 Output frequency
2 R1 R2C1C2
R2C1
B
R1C1  R2C2  R2C1
if R1  R2 and C1  C2 then
1
1
f0 
and B 
2 RC
3
17
Wien Bridge
Oscillator
• Another form of
Wien Bridge
18
Wien Bridge Oscillator
• For a closed-loop gain, AB = 1
– Op-amp gain ≥ 3
• Improved circuit
– Separate RF into 1 variable and 1 fixed
resistor
– Variable: minimize distortion
– Zener Diodes: limit range of output voltage
19
Phase-Shift Oscillator
• Three-section R-C network
– ≈ 60° per section
– Negative FB = 180°
– 180° + (60° + 60° + 60°) = 360° =
Positive FB
1
f0 
Output frequency
2 6 RC
A  29 Required voltage gain
20
Phase-Shift Oscillator
• Circuit
21
LC Oscillators
• LC circuits can produce oscillations
• Used for
– Test and measurement circuits
– RF circuits
22
LC Oscillators
• Named after pioneer engineers
– Colpitts
– Hartley
– Clapp
– Armstrong
23
LC Oscillators
• Colpitts oscillator
– fs = series resonance
– fp = parallel resonance
– L-C network → 180° phase shift at fp
24
LC Oscillators
RF
Rin
__
_
__
_
L
+
C2
+V
vout
–V
C1
__
_
__
_
25
LC Oscillators
• Equations
1  s 2 LC2
Impedance: Z ( s) 
 s 2 LC1C2 
s(C1  C2 ) 1 

C1  C2 

Oscillator frequency: f 0 
1
C1C2
2 L
C1  C2
26
LC Oscillators
• Hartley oscillator
– Similar to Colpitts
– L and C’s interchanged
– Also have fs and fp
27
LC Oscillators
RF
Z (s) 
f0 

sL1 1  s 2 L2C

1  s 2  L1  L2  C
+
Rin
___
__
_
1
2
 L1  L2  C
+V
vout
–V
C1
L2
L1
___
__
_
28
Crystal Oscillators
•
•
•
•
•
•
•
Quartz crystals
Mechanical device
Higher frequencies (>1 MHz)
Stability
Accuracy
Reliability
Piezoelectric effect
29
Crystal Oscillators
• Electrical model
– Both have
parallel and series
resonance
RF
C1
L1
C0
• Symbol
– Quartz crystal
– metal plates
30
Crystal Oscillators
• Impedance varies with
frequency
• Square wave crystal
oscillator circuit
• Choose C1 and C2
R2
vout
CMOS Inverter
– Oscillation frequency
between fs and fp
R1
XTAL
C1
C2
___
__
_
31
555 Timer
• IC
– Internal
circuit
32
555 Timer
• Usage
– Monostable timing
– Astable mode = relaxation oscillator
– Trigger voltage
– Control voltage
– Threshold voltage
– R-S flip-flop
33
555 Timer
• Relaxation oscillator
T1  ln(2)   RBC 
VCC = +15 V
RA
T2  ln(2)   RA  RB  C
T  ln(2)   RA  2 RB  C
1
f
T
8
4
7
NE555
RB
2
6
3
1
C
vout
5
0.01 μF
34
___
__
_
555 Timer
• Monostable Circuit (one-shot)
• Trigger high → vout = low
R
• Trigger low → vout = high
VCC = +15 V
8
A
4
7
NE555
2
6
C
3
1
___
__
_
Trigger
vout
5
0.01 μF
35
___
__
_
Voltage Controlled OscillatorVCO
• ∆fout

∆vin
R1

Outputs
1 nF
Voltage Input
2.4 VCC  VC 
fO 
R1C1VCC
VCC
6
8
LM566C
5
7
C1
___
__
_
1
___
__
_
3
Square wave
4
Triangle wave
vout
36
Related documents