* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download CHE2060 Lecture 5: Acid-base chemistry CHE2060 Lecture 5: Acid
Survey
Document related concepts
Transcript
4/10/17 CHE2060Lecture5:Acid-basechemistry 5.1Acids&bases:overview&basics 5.2Acid&basestrength 5.3Equilibriumacid-basereactions 5.4Thelevelingeffectofsolvents 5.5Estimationofaciditybyconceptualknowledge 5.6 Classesoforganicacids&bases 5.7Functionalgroups:acid-basenature Daley&Daley Chapter5: Acid-basetheory CHE2060Lecture5:Acid-basechemistry 5.1Acids&bases:overview&basics 5.2Acid&basestrength 5.3Equilibriumacid-basereactions 5.4Thelevelingeffectofsolvents 5.5Estimationofaciditybyconceptualknowledge 5.6 Classesoforganicacids&bases 5.7Functionalgroups:acid-basenature Daley&Daley Chapter5: Acid-basetheory 1 4/10/17 Acids&bases Overview&definitions Basicacid-basereaction Electrophiles&neutrophiles Basesvs.Nu Anorbitalview Acids&bases:ashiftinperspective 1884 Arrhenius AcidsaresourcesofH+ions;basessourceofOH-ions 1923 1916 Brønsted-Lowry AcidsareH+donors;basessourceofH+acceptors G.N.Lewis Acidsacceptelectronpairs(:);basesdonate: M&Bp.6-7 2 4/10/17 Acids&bases:ashiftinperspective 1884 Arrhenius AcidsaresourcesofH+ions;basessourceofOH-ions 1923 1916 Brønsted-Lowry AcidsareH+donors;basessourceofH+acceptors G.N.Lewis Acidsacceptelectronpairs(:);basesdonate: Notethatthisreactionmovesapairofelectronsinasingle-stepreaction. • Afreepairfromthehydroxideoxygenformsadativebondwith thehydrogeniontoformwater. M&Bp.6-7 Acids&bases:ashiftinperspective 1884 Arrhenius AcidsaresourcesofH+ions;basessourceofOH-ions 1923 1916 Brønsted-Lowry AcidsareH+donors;basessourceofH+acceptors G.N.Lewis Acidsacceptelectronpairs(:);basesdonate: Notethatthisreactionmovesapairofelectronsinasingle-stepreaction. • Afreepairfromthehydroxideoxygenformsadativebondwith thehydrogeniontoformwater. M&Bp.6-7 3 4/10/17 Acids&bases Acid-basereactionsarecentraltobiochemistrybecausemostbiological reactionsarecatalyzedbyacidsorbases.Sowemustunderstandthebasics ofacid-basereactionsandbeabletoanswerthesequestions: • Where’stheacid? • Where’sthebase? • Howcanthetworeact? • Whatwillhappen? Brønsted-Lowryacids&bases:acidsdonateprotons(H+1)&basesacceptthem Conjugatepairs:before&afterlossofproton N’sfreepairformsadativebond;πbecomefreepair,breakingbond. M&Bp.6-7 Examples:drawtheproducts Karty 4 4/10/17 Examples:donor?acceptor?products? Step1.Line-bondstructures,showingallfree: M&Bp.6-7 Examples:donor?acceptor?products? Step1.Line-bondstructures,showingallfree: Step2.IdentifyLA&LB M&Bp.6-7 5 4/10/17 Examples:donor?acceptor?products? Step1.Line-bondstructures,showingallfree: Step2.IdentifyLA&LB Step3.Free:fromtheLBmovetocreateadative bondwiththeLA M&Bp.6-7 Examples:donor?acceptor?products? Step1.Line-bondstructures,showingallfree: Step2.IdentifyLA&LB Step3.Free:fromtheLBmovetocreateadative bondwiththeLA Step4.Createtheproducts M&Bp.6-7 6 4/10/17 Examples:donor?acceptor?products? Step1.Line-bondstructures,showingallfree: Step2.IdentifyLA&LB Step3.Free:fromtheLBmovetocreateadative bondwiththeLA Step4.Createtheproducts. Step5.Identifytheconjugateacid&conjugatebase Conjugateacid-basepair:twomoleculesthatdifferonlybyoneH! NotethatthesereactionsmoveoneH,andoronepairofelectrons. M&Bp.6-7 Examples:donor?acceptor?products? Whichproductisthe conjugateacid& conjugatebase? conjbaseconjacid M&Bp.6-7 7 4/10/17 Lewisacids&bases Criticalfororganicchemistry…andacidsdon’talwayshaveH! Lewisacid: acceptsane-pairfromaLewisbase…..Doesn’thavetobeH+1 Lewisbase: donatesane-pairfromtoLewisacid TCAcycleexample: HereFeistheLewisacidin theenzyme’scofactor. Metalcationsoftenact cofactoracids/basesin enzymes. M&Bp.10 Electrophiles&nucelophiles Electrophiles&nucleophilesarewhatorganicchemistscallLewisacids& Lewisbases. Electrophile:+charged&thereforee-loving;lookingforane-richnucleophile E+=acids(H+1);trialkylsulfonium(R3S+1);carbonyls(δ+C=O) Nucleophile: e-rich(sometimes-)&lookingforane-seekingelectrophile Nu:=amines(:NH2);water(H2O);hydroxideion(OH-1); alkoxideions(RO-1);thiolateions(RS-1) Nu:- Nu: E+ E M&Bp.11 8 4/10/17 Who’swho? Acommonthemeoforganicreactionsisnucleophilicattack:anucleophile usesitselectronpairstoattackanelectrophile,achemicalwithlow electrondensity. It’scriticaltobeabletoidentifyreactingchemicalsasNu:orE+. 1. Identifyeachplayer. 2. Predicttheoutcomeoftheattack. .. :O: δ- E+ δ+ :OH .. Nu: .. :O: δ- E+ δ+ Nu: E+ .. Cl: .. .. OH .. Nu: ..+ OH2 .. Kleinp.178 Basesvs.Nu: MostorganicrxnsinvolveeitherbasesorNu:&studentsoftenconfusethem. Thedifferenceispurelyfunctionalbecauseanion,moleculeorgroupmay functionasboth. Base: thegroupremovesaprotonandtakesitaway Nu:attackstheotherreactant&isaddedtoit HydroxidecanactaseitherabaseoraNu:.Whichisitdoingintheseexamples? OHactingasabase:removesproton&becomesH2O OHactingasaNu;it’saddedtotheotherreactant Kleinp.179 9 4/10/17 Examples:basesvs.Nu: Foreachexamplebelow,determinewhetherhydroxideorwaterisactingas abaseoraNu:,andpredicttheoutcome. base Nu: .. :O: .. Cl: .. :OH .. Nu: base base :O: || .. .. H2O+:O–S–O–H .. .. || :O: :O: H3O+1+ Kleinp.180-1 Anorbitalperspective Let’slookatelectrophiles,nucleophiles&howtheyreactatthelevelof obitals: sp3 • base • unbonded: • Nu: emptyp • acid • notenoughe- • NH3sp3overlapswithBF3p • NH3donatesits:toform thebond • BF3becomessp3hybridized • Thenewmoleculehasno overallcharge,butdoeshave formalcharges Dativebondsoccupyemptyorbitalsbyfusingthemwithfullorbitals. D&Dp.212-3 10 4/10/17 Acidityofalkanesvs.alkenesvs.alkynes Therelativeacidityofalkanes,alkenesandalkynesisaresultoftheshapes &geometryoftheirhybridorbitals. alkane sp3 alkene sp2 alkyne sp acidityincreases Why?Theshorter,moresphericalshapeofthespalkyeneorbitalsplaces electronsclosertothenucleus.Themoretightlyelectronsareheldtothenucleus, thelesstheyarepulledtowardhydrogenatomstheyarebondedto. Alkynesarethereforebetteracidsthanalkenesandalkanes…. ...becuasetheirhydrogenarelesstightlybound. D&D,p.213 Inbiochemistry… Biochemicalexamplesofacid-base(akanucleophile-electrophile)reactions. M&Bp.11 11 4/10/17 CHE2060Lecture5:Acid-basechemistry 5.1Acids&bases:overview&basics 5.2Acid&basestrength 5.3Equilibriumacid-basereactions 5.4Thelevelingeffectofsolvents 5.5Estimationofaciditybyconceptualknowledge 5.6 Classesoforganicacids&bases 5.7Functionalgroups:acid-basenature Daley&Daley Chapter5: Acid-basetheory Acid&basestrength Ionization&pH Strength:Ka&pKa Commonorganicacids&bases Predictingdirectionofequilibrium 12 4/10/17 Ionizationofwater&pH ThestrengthofaBrønsted-Lowryacidisdeterminedbytheextentto whichitionizesinwater:autoionization. hydronium ion Becauseboththe“acid”and“base”arewater,thedegreeofdissociationor auto-ionizationisveryslight. Forwater,theconcentrationofthedissociatedproductsareconstant,Kw. Kw=[H3O+1][OH-1]=Kw=1.00x10-14 WhileKwisconstant,theconcentrationofhydroniumioncanchangegreatly. Itisthis[H3O+1]thatchemistsmeasureaspH! pH=-log[H3O+1]…oftenexpressedaspH=-log[H+1] M&Bp.6-8 AcidstrengthismeasuredasKaorpKa Anacid’sstrengthismeasuredasitsdissociationconstant,Ka. So,imagineanacid,Ka: hydronium ion ThelargertheKavaluestrongertheacid’sstrength. StrongacidshavepKavaluesbetweenatzeroorbelow. MostorganicacidsarequiteweakandhaveKavaluesbetween10-2and10-60. Tomakeiteasiertocomparethisverywiderangeofvalues,Kaisoftenconverted topKa,alogarithmicscale: pKa=-log(Ka) Sincethisscaleisinverselogarithmic,butlowerthepKathestrongertheacid. D&D,p.215-7 13 4/10/17 CommonpKavalues weakest “acid” Strongestacid D&D,p.217 pKa’sofcommonorganicacids M&Bp.6-8 14 4/10/17 Examples:usingpKatogaugeacidstrength Whichofeachpairisthestrongeracid? • Andwhatarethemoleculesnamed? p-methylphenol p-chlorophenol Howmuchstrongeristhep-chlorophenol? ThedifferenceinpKavalues=10.26–9.43=0.83. Thedifferenceinacidstrength=100.83=6.8. Sop-chlorophenolis6.8timesasstronganacid. Kartyp.300 Examples:pKaformostacidicproton? Foreachmolecule,identifythemostacidicproton(hydrogen). methyl48 carboxylic acid4.75 ethanol16 thiol10.3 phenol10 benzoicacid4.2 hydronium-1.7 methyl ammonium 10.63 amine38 Kartyp.300 15 4/10/17 Strongbasesareweakacids. YoucanpredictthestrengthofabaseifyouknowtheKaorpKavaluesof thebase’sconjugateacid. Sobasesarestrongerwhentheirconjugateacidshave: • lowerKavalues;or • higherpKavalues. Sowhichisthestrongerbase,hydroxide(OH-1)orammonia(NH3)? • Theconjugateacidofhydroxide(OH-1)iswater:pKa15.7 • Theconjugateacidofammoniaisammonium:pKa9.4 So,hydroxideisthestrongerbase. Howmuchstronger? Differenceinpka: 15.7–9.4=6.3 Differenceinstrength: 106.3=2.0E6=2milliontimesstronger! Kartyp.301 Example:predictthestrengthofabase Whichisthestrongerbase,chlorideionorphenoxideion(C6H5O-1)? • Theconjugateacidofchlorideionishydrochloricacid:pKa~-7 • Theconjugateacidofphenoxideionisphenol:pKa10 So,phenoxideionisthestrongerbase. Howmuchstronger? Differenceinpka: 10–(-7)=17 Differenceinstrength: 1017=1E17timesstronger! Kartyp.301 16 4/10/17 pKa’sofcommonorganicbases Stengthofbasesismeasuredbytheacidityoftheirconjugateacid. pKa+pKb=14->pKb=14-pKa Sostrongerbaseshave higherpKavalues. M&Bp.8-9 CHE2060Lecture5:Acid-basechemistry 5.1Acids&bases:overview&basics 5.2Acid&basestrength 5.3Equilibriumacid-basereactions 5.4Thelevelingeffectofsolvents 5.5Estimationofaciditybyconceptualknowledge 5.6 Classesoforganicacids&bases 5.7Functionalgroups:acid-basenature Daley&Daley Chapter5: Acid-basetheory 17 4/10/17 Equilibriumreactions UsingpKatopredictwhether reactantsorproductspredominate Equilibriumofconjugateacid-basepairs Whenareactionisreversible,the“side”withtheweakerconjugateacid (higherpka)isfavored.Arereactantsorproductsarefavoredhere? pKa=15.1 pKa=36 pKa=10.66 pKa~4.76 pKa=35 pKa~26 pKa=4.76 pKa~-7.5 D&D,p.218 18 4/10/17 Whyistheweakerconjugateacidfavored? It’sasifthetwoacids,onthereactant&productsides,ofthereactionarein competitionwithoneanother. • Inessence,thestrongeracidwinsandactslikeanacid,acceptingan electronpair,anddrivingthereactiontoproducingtheweakeracidand theconjugatebaseofthestrongeracid. B:-+H–A B–H+:A- baseacidconjugateconjugate acidbase Kartyp.302 Amoredetailedlookthedrivingacid Let’slookataspecificexamplewithnumbers. • Thestrongacidpushesequilibriumtotheright aceticacidmethylacetatemethyl amine ion ammonium pKa4.76 pKa10.63 stronger equilibrium WecanseehowstronglythereactionfavorsproductsbycalculatingΔpKa. ΔpKa=10.63–4.75=5.88 Sotheequilibriumconstantforthisreactioncanbecalculated: Keq=105.88=7.6E105 Inotherwords,productsarefavoredbyafactorof760,000. Kartyp.302 19 4/10/17 Example:quantitatethepush Predictwhichsideisfavoredandbyhowmuch. 2-methyl- 2-propoxide propanone pKa20 2-methyl- 2-propanol pKa19 propanone anion equilibrium WecanseehowstronglythereactionfavorsreactantsbycalculatingΔpKa. ΔpKa=20–19=1 Sotheequilibriumconstantforthisreactioncanbecalculated: Keq=101=1o Inotherwords,reactantsarefavoredbyafactorof10.Barelypushed. Kartyp.302 CHE2060Lecture5:Acid-basechemistry 5.1Acids&bases:overview&basics 5.2Acid&basestrength 5.3Equilibriumacid-basereactions 5.4Thelevelingeffectofsolvents 5.5Estimationofaciditybyconceptualknowledge 5.6 Classesoforganicacids&bases 5.7Functionalgroups:acid-basenature Daley&Daley Chapter5: Acid-basetheory 20 4/10/17 The‘leveling’effect Solventsmayhijackintendedreactions Remembersolvents? Solventsarecompoundsthatare: • Presentinlargeamounts(largerthansolvents); • Usedtocreateasolubleenvironmentforsolutereactants;and • Sometimesplaysaroleinsolutereactions. Everydayexample:wateristhesolventforextractionofcaffeineandother coffeeorteacompoundsfrombeansorleaves. Ideally,solventseitherhavenoimpactonreactionsoractuallyenhancethem. However,ifsolventsarenotselectedcarefullytheycaninterferewith–or hijack–ourintendedreactions. Karty,p.304 21 4/10/17 So,what’s‘leveling’? Levelingisareactionofthesolventwithoneofthereactants.Thisreaction usesupsomeormostofthatreactantandrestrictstheintendedreaction. • Acids&basesareoftenimpactedbylevelingbecausetheyreactwitha widevarietyofsolvents,likewater. pka~-7 pka~-1.7 SoHClisapowerfulaciduntilitisdilutedinwater.OnceHClreactswithwater,theonly acidremainingishydroniumwhichis1.99E5timesweakerthanHCl. • Water‘levels’(orreducesorrestricts)thestrengthofHCl. Karty,p.304 Basestrengthcanalsobeleveledbysolvents. Deprotonateddimethylamineisabase.Noteitstwofreeelectronpairs. pKa15.7 pKa38 Deprotonateddimethylamineisapowerfulbase.Itsconjugateacid,dimethylamine, hasapKaof38! • Forbases,theequilibriumispushedtowardstheacidwiththehigherpKa. • Thestrengthofdeprotonateddimethylaminepushesequilibriumtowardsproducts byafactorof2.oE22! • However,ifwaterisusedasasolventwhendeprotonateddimethylamineisusedas abase,waterwillactasanacid,reactwithand‘neutralize’thepowerfulbase. • Reactionwiththewatersolventproduceshydroxideastheremainingbase. • Andhydroxideisaweakerbasethandeprotonateddimethylamine. Karty,p.304 22 4/10/17 Conclusionsaboutleveling • Ifwaterisusedasthesolvent,noacidstrongerthanhydronium,andno baseweakerthanhydroxide,canexisttoappreciableextents. Forothersolvents: • Thestrongestacidthatcanexistinsolution,toappreciableconcentrations, istheprotonatedsolvent. • Thestrongestbasethatcanexistinsolution,toappreciableconcentration, isthedeprotonatedsolvent. Take-homemessage? Solventsmustbechosencarefully! Karty,p.304 Example:wisechoiceofsolvent Ifyouwanttousedeprotonateddimethylamineasabase,diethyletherisa bettersolventthanwater. Usepkavaluestoshowthatdiethyletherisabettersolvent! pKa45 pKa38 Forbases,theequilibriumispushedtowardstheacidwiththehigherpKa,sowhen deprotonateddimethylamineisplacedindiethylethersolventthetwobarelyreact. Karty,p.304 23 4/10/17 Example:youchoosethesolvent! Wouldeachofthesesolventsbeappropriateforthereactant?Why? Reactant: pKa25foritsconjugatedacid Solvents: pKa:15.716173545 Deprotonatedethylyne(acetylene)isabase. • Forbases,theequilibriumispushedtowardstheacidwiththehigherpKa. • Topreservethe‘baseness’ofthereactantwewanttopushequilibriumbacktowards it;totheleft. • Sousesolventsthatarestrongeracidsthantheconjugateacidofthereactant. • DMSO(dimethylsulfoxide)anddiethyletherhavehigherpKavaluesthenacetylene. Karty,p.304 CHE2060Lecture5:Acid-basechemistry 5.1Acids&bases:overview&basics 5.2Acid&basestrength 5.3Equilibriumacid-basereactions 5.4Thelevelingeffectofsolvents 5.5Estimationofaciditybyconceptualknowledge 5.6 Classesoforganicacids&bases 5.7Functionalgroups:acid-basenature Daley&Daley Chapter5: Acid-basetheory 24 4/10/17 Estimatingacidity …byusingconceptualknowledgeof thefactorsthatincreaseordecrease acidity Howdoweestimateacidity Andwhatmakessomeprotons(Hatoms)moreacidicthanothers? 1. EstimatepKabyfindingasimilargroupinatableorchartofpKavalues. 2. LookattheENvaluesofcloseneighbors(inductiveeffect). 3. Lookfornearbymultiplebonds(πbonds). 4. IstheHattachedtoapositivelychargedatom? 5. WhatistherowpositionoftheatomtheHisboundto? 6. WhatisthecolumnpositionoftheatomtheHisboundto? 7. WhatistheorbitalhybridizationoftheatomtheHisboundto? 8. WhatisboundtotheatomthattheHatomisboundto?(pattern) Karty,p.304 25 4/10/17 1.EstimatingpKa Functionalgroupsarethereactivepartsoforganicmolecules,andpKavalues areonegreatwaytopredicttheoutcomeofreactions. • SomefunctionalgrouppKatablescanbefoundinpKatables. • Whatifyoucan’tfindapKa? 1.YoucanestimatepKabyfindingasimilargroupinatableorchartofpKavalues. • EstimatethepKavaluesofthesetwomolecules. Similartoethanol:pKa16 • ActualisopropanolpKais16.5 Similartoaceticacid:pKa4.75 • ActualbenzoicacidpKais4.20 Karty,p.304 2.InductiveeffectofhighENneighbors Electronegativeatom(s)orgroup(s)closetothehydrogenofinterestwill increaseaciditybypullingelectronsthroughthemoleculeandtowardsthe electronegativegroup,makingthebondtoHmorepolarandthereforemore reactive. • AnionsarestabilizedbyENgroupsnearthenegativecharge. • CationsaredestabilizedbyENgroupsnearthepositivecharge. pKa0.77 Theelectronegativeπbondspullelectrons throughthestructureandtowards themselves.Thisincreasesthepolarityof theO–Hbondandthereforeincreases acidity;pKaissignificantlylowered. pKa10 pKa4.76 Theelectronegativechlorineatomspull electronsthroughthestructureandtowards themselves.Thisincreasesthepolarityofthe O–Hbondandthereforeincreasesacidity;pKa issignificantlylowered. pKa16 Karty,p.304 26 4/10/17 3.Nearbyπbondsstabilizeconjugateanions Acidsaremorepowerful(lowerpKa)whentheirconjugatebasesarestable. Resonancestabilizesanionsformedbyreactionofacids. pKa16 Ethanoicacid(akaaceticacid)formstheacetate anionwhendeprotonated.Theacetateanionis stabilizedbyresonance. Notethatthenegativechargeisdelocalizedover severalatomsintheresonancehybrid. Delocalizationofchargeincreasesstability. pKa4.76 Ethanolisdeprotonatedtoform itsconjugatebase,ethoxide.The negativelychargedoxygenatom isfairlystableduetoitshighEN. Karty,p.304 3.Nearbyπbondsstabilizeconjugateanions Acidsaremorepowerful(lowerpKa)whentheirconjugatebasesarestable. Resonancestabilizesanionsformedbyreactionofacids. EPM p.321Karty Karty,p.304 27 4/10/17 4.Honpositivelychargedatoms Hydrogenatomsboundpositivelychargedatomsaremoreacidicthanthose boundtounchargedatoms. H2O pKa: H3O+1 15.7 -1.7 NH3 36 NH4+1 9.4 Why?Generally,chargedatomsarelessstable,sohigherenergy. Theproductsareboth chargedbutthe reactantsarenot. Thereactionisnot energeticallyfavorable. pKa: 15.7 pKa: 9.4 -1.7 15.736-1.7 Onereactant&oneproduct arecharged.Thereactionis lessenergetically unfavorable. OIsmoreelectronegative& betterabletocarrythe charge. Karty,p.312-14 5.Effectofrowposition(EN)onpKa Thefurthertotherightanatomis,themoreacidicareitshydrogenatoms. • Becauseatomsbecomemoreelectronegativefromlefttoright. • Moreelectronegativeatomsholdontotheirelectronsmorestrongly,polarizingthe bondtohydrogenandweakeningit. CH4 pKa48 NH3 36 OH2 15.7 Thestabilityofanionsincreasesasthechargedatom’selectronegativityincreases. • Becausemoreelectronegativeatomsareabletoholdfreeelectronpairs. .. .. .. H3C: H2N:- HO:- :F:- .. .. electronegativity anionstability Thestabilityofcationsdecreasesasthechargedatom’selectronegativityincreases. • Becauselesselectronegativeatomsareabletogiveupfreeelectronpairs. electronegativity H4N+ H3O+ H2F+ cationstability Karty,p.312-14 28 4/10/17 6.Effectofcolumnposition(size)onpKa Thefurtherdownacolumnanatomis,themoreacidicareitshydrogenatoms. • Becauseatomsbecomelargerfromtoptobottom. • Largeratoms(ions)havemoreroomforfreeelectronpairs:lowerchargedensity. WhichhasalowerpKavalue,CH4orSiH4? Carbonisinrow2ofcolumnIVAwhileSiisinrow3ofcolumnIVA; Siisthereforelargerthancarbon. pKa=48 pKa=35 Sotheconjugatebase(-:SiH3)formedbydeprotonationofSiH4ismorestable thantheconjugatebase(-:CH3)formedbydeprotonationofCH4. Karty,p.312-14 7.Effectoforbitalhybridization OrbitalhybridizationoftheatomtheHisbondedtoaffectsthatatoms‘effective electronegativity’. Effectiveelectronegativity:sp>sp2>sp3 • ThestabilityofachargedmoleculeincreasesastheeffectiveENofnegatively chargedatomsincreases. • ThestabilityofachargedmoleculedecreasesastheeffectiveENofpositively chargedatomsincreases Whichisastrongeracid?(CH3)2C=OH+or(CH3)2CH-OH2+? Lessstable cation,so strongeracid. Morestable cation,so weakeracid. pKa=20 Check? • Strongeracidshave weakerconjugate bases. • Strength0fbase increaseswithpKa. pKa=16.5 Karty,p.312-14 29 4/10/17 8.Effectof1°,2°,or3°ions Moleculargeometrycanaffectthestabilityofcarbocationsandcarbanions. Carbocationsaremoleculesinwhichcarbonispositivelycharged. Carbanionsaremoleculesinwhichcarbonisnegativelycharged. • • • • Methyl:carbonboundonlytohydrogenatoms Primary:carbonboundtoonealkylgroup Secondary:carbonboundtotwoalkylgroups Tertiary:carbonboundtothreealkylgroups Delocalizationincreases ionstability. Leaststable Moststable Karty,p.312-14 Quickchecklist? TrythisquicksetofquestionstoassessrelativeacidstrengthorpKa. 1.Dothemoleculeshavedifferentcharges? +chargesincreaseacidity -chargesdecreaseacidity 2.Dothemoleculescarrychargesondifferentatoms? size EN 3.Doeseithermoleculehaveresonance? Resonancestabilizeschargeof conjugatebasesbydelocalization. hybridization 1°,2°,3°pattern 4.Doinductiveeffectsoccurineithermolecule? NearbyENatomsincreaseacidity Karty,p.312-14 30 4/10/17 Example EstimatethepKaforthehydrogenatomsshowninthesemolecules. Theringdoesn’t includesignificantly electronegative atomsorbonds. So,pKaissimilar mostamineslike dimethylamine. pKa~38 Thisringhas electronegativeπbonds. So,pKawillbelower (moreacidic)than propanone. pKa<20 Thisistheprotonated versionofdiethylether. Protonationanda positivechargeincrease acidity,reducingpKa. Comparehydroniumto water. pKa<45 Karty,p.310-11 Example Estimatetherelativeaciditiesof: • Ethane • Ethene • Ethyne(akaacetylene) Leastacidic Thestabilityoftheconjugatebase (anion)increasesfromsp3tosp. NotethatthemostacidicHisattachedto thecarbonwiththemostπbonds. Mostacidic Karty,p.310-11 31 4/10/17 Example Whichmoleculeismoreacidicbasedonstructure? Moreacidic: ReplacementofHwithmoreENCl destabilizesthepositivelycharged molecule.Loss(donation)ofH removesthepositivechargeand increasesstability. Inductiveeffect Karty,p.312-14 Example Whichalcoholismoreacidicbasedonstructure? EPM Karty,p.324 Moreacidic: ReplacementofHwithmoreENCl stabilizesthenegativelycharged conjugatebase.Amorestablebase allowstheHtoleave. Inductiveeffect Karty,p.312-14 32 4/10/17 Example Ranktherelativeaciditiesofthesemolecules. Leastacidic(4) TheENFis locatedfarfrom thepolarOH hydrogen. (3) TheENFis locatedcloserto thepolarOH hydrogen. Mostacidic(1) Positivecharge causesthis moleculetobe leaststable. LosingaHwill removethe chargeand stabilizethe molecule. (2) TwoENgroups (Fand=O) withdraw electronsand increasethe polarityofthe OHhydrogen. Karty,p.312-14 CHE2060Lecture5:Acid-basechemistry 5.1Acids&bases:overview&basics 5.2Acid&basestrength 5.3Equilibriumacid-basereactions 5.4Thelevelingeffectofsolvents 5.5Estimationofaciditybyconceptualknowledge 5.6 Classesoforganicacids&bases 5.7Functionalgroups:acid-basenature Daley&Daley Chapter5: Acid-basetheory 33 4/10/17 Classesoforganicacids&bases Organicacids&bases Organicacids&baseshavecarbonskeletons.We’lllookatthesetypes: • Neutralorganicprotonacids • Neutralorganicbases • Positivelychargedcarbonacids • Negativelychargedcarbonbases D&D,p.225-6 34 4/10/17 Neutralorganicprotonacids:carboxylicacid Threemaintypes: • Carboxylicacids • Phenols • Alcohols OH-1functionalgroup OHbondpolaritymakesthese groupsacidic&reactive. Degreeofaciditydepends onthestabilityofthe conjugatebase. Carboxylicacidsarethemostacidicofthethreealthoughtheyareweak acids.Aceticacids(2carbons)hasapKaof4.8. Anionhas3unhybridized porbitalsw/totalof4e-. Theyforma3-atomπ molecularorbitalsystem; ½πconnectsCtoeachO. Theconjugatebase(anion)isstabilizedby resonance.The(-1)isdelocalizedover2oxygen atomsinthehybrid. Thereforestrongeracidthanalcohol! D&D,p.225-7 Neutralorganicprotonacids:phenol Phenolsaremuchlessacidicthancarboxylicacids:pKaof10. Thephenolateanionisstabilizedbyresonance&thereforehassomeacidity. Butsomeofphenolateanion’sresonancestructuresdisruptaromaticresonance& creates(-)carbon. Becausephenolate’scarboncanbecharged: 1. thephenolateionislessstablethanthecarboxylateion;and 2. phenolislessacidicthancarboxylicacid. D&D,p.225-7 35 4/10/17 Neutralorganicprotonacids:alcohols AlcoholsarealkylmoleculeswithOH-1functionalgroups:R–OH. • Alcoholsaremuchlessacidicthanphenols. • Alcoholsarejustabitmoreacidicthanwater. • ThepKarangeofalcoholsare~15–18. Isthereanyresonancestabilizationforthisalcohol?Nope. D&D,p.228-9 Neutralorganicbases:amines Neutralorganicbasescontainoneormorepairsofnonbondingelectrons. • WhenactingasLewisbasesthesee-pairsaredonated. • Themoreavailablethe:,themorepowerfulthebase. • Anymoleculewithapair(:)canactasabase. We’lllookatjusttwoofthemanyneutralorganicbases: • Amines;and • Ethers. Aminesarederivativesofammonia,NH3,andactasweakbasesinwater. methyl amine methyl pKa10.6 ammonium relatively ion strongbase AminesarestrongbasesbecauseNholdsits: lessstronglythanO,S,halogens. D&D,p.228-9 36 4/10/17 (+)acids&(-)bases Positivelychargedacidsaree-deficient;carbonsdon’thaveanoctet • Carbocationisacarbonwithafull(+)charge • Highlyreactiveandseldomseensincetheactasintermediates • CarbocationsareLewisacids(hardacids) • ReactwiththefirstLewisbasethey“see” • Preferreactingwithhardbases Carbocationssp2 withemptyp orbitalcarryingthe +charge. Negativelychargedbasesarecarbonsbondedonlytothreeotheratoms* carryinganunbondedelectronpair(:). • Carbanionisacarbonwithafull(-)charge • Looksverymuchlikeanamine • Carbonholdsthe:loosely sinceCisnotveryelectronegative • Thuscarbanionsarestrongbases D&D,p.228-9 Example Ranktheacidityoftheserelatedcarboxylicacids: pKa:4.75 2.86 1.26 0.63 AcidityincreasesasthenumberofENsubsitutentsincreases. Moresubstituentshelptocarrythe:(orthenegativecharge)ofthe acid’sconjugateanion. D&D,p.233-4 37 4/10/17 Examples Randtheaciditiesofthesetwosetsofmolecules. pKa:5.2vs.11.1 Resonancestabilizesthe(+)& holds:closertothenucleus makingthemlessavailablefor donation.(11.1isthebetterbase) • Moststablecation sp2 sp3 pKa:-10sphybridizationkeeps:veryclose;lessavailable • Leaststablecation • Morestablecationbecausethe+is delocalizedovertheCH3group pKa:9.4 10.6 TheCH3alkylgrouphelpstodelocalize(orshare)the(+)charge;betterbase However,addingmorealkylgroupscandecreasebasicitybysterically crowdingtheN&destabilizingtheion. D&D,p.233-4 CHE2060Lecture5:Acid-basechemistry 5.1Acids&bases:overview&basics 5.2Acid&basestrength 5.3Equilibriumacid-basereactions 5.4Thelevelingeffectofsolvents 5.5Estimationofaciditybyconceptualknowledge 5.6 Classesoforganicacids&bases 5.7Functionalgroups:acid-basenature Daley&Daley Chapter5: Acid-basetheory 38 4/10/17 Functionalgroups Acidity&reactivity Functionalgroups M&Bp.4 39 4/10/17 Functionalgrouppolarity M&Bp.5-6 Graphicalrepresentation Notethatthisscaleshowsbothmolecules&somefunctionalgroups. D&D,p.218 40 4/10/17 CHE2060Lecture5:Acid-basechemistry 5.1Acids&bases:overview&basics 5.2Acid&basestrength 5.3Equilibriumacid-basereactions 5.4Thelevelingeffectofsolvents 5.5Estimationofaciditybyconceptualknowledge 5.6 Classesoforganicacids&bases 5.7Functionalgroups:acid-basenature Daley&Daley Chapter5: Acid-basetheory KeyconceptsfromLecture5 • AccordingtotheBrønsted-Lowrydefinitionofacidsandbases,anacid isaprotondonorandabaseisaprotonacceptor. • Acidstrengthisrelatedtothestabilityoftheacid’sconjugatebase.The strongertheacid,themorestableisitsconjugatebase. • Ameasureofacidstrengthisthevalueoftheaciddissociation constant,Ka.HigherKa=strongeracid • AccordingtotheLewisdefinitionofacidsandbases,anacidisan electron-pairacceptorandabaseisanelectron-pairdonor. • Thecharacteroftheacidicorbasicfunctionalgroup,aswellasthe inductiveeffectofanyadjacentfunctionalgroup,affectsacidorbase strength. 41