Download Lecture_9

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Chapter 9
Solving Second order
differential equations
numerically, 2
Online lecture materials
โ€ขThe online lecture notes by Dr. Tai-Ran
Hsu of San José State University,
http://www.engr.sjsu.edu/trhsu/Chapt
er%204%20Second%20order%20DEs.p
df
provides a very clear explanation of the
solutions and applications of some
typical second order differential
equations.
DSolve
โ€ขDSolve of Mathematica can
provide analytical solution to a
generic second order differential
equation. See
Math_built_in_2ODE.nb.
Typical second order, non-homogeneous
ordinary differential equations
n(x)
Typical second order, non-homogeneous
ordinary differential equations
n(x)
Guess:
After some algebra
Simple Harmonic pendulum as a special
case of second order DE
Force on the pendulum
for small oscillation,
Equation of motion (EoM)
๐น๐œƒ = ๐‘š๐‘Ž๐œƒ
๐‘‘๐‘ฃ๐œƒ
โˆ’๐‘š๐‘”๐‘ ๐‘–๐‘›๐œƒ=๐‘š
๐‘‘๐‘ก
=
๐‘‘ ๐‘‘๐‘Ÿ
๐‘š
๐‘‘๐‘ก ๐‘‘๐‘ก
l
โ‰ˆ
๐‘‘2
๐‘š 2
๐‘‘๐‘ก
๐‘‘2 ๐œƒ
๐‘”๐œƒ
โ‰ˆโˆ’
2
๐‘‘๐‘ก
๐‘™
n(x)
๐‘™๐œƒ
r
The period of the SHO is
given by
l
T ๏€ฝ 2๏ฐ
g
Simple Harmonic pendulum as a special
case of second order DE (cont.)
n(x)
๐‘ฅโ‰ก๐‘ก
๐‘ข ๐‘ฅ โ‰ก ๐œƒ(t)
๐‘Žโ‰ก0
๐‘”
๐‘โ‰ก
๐‘™
๐‘›(๐‘ฅ) โ‰ก 0
๐‘‘ 2 ๐œƒ(๐‘ก)
๐‘”๐œƒ
=โˆ’
2
๐‘‘๐‘ก
๐‘™
Simple Harmonic pendulum as a special
case of second order DE (cont.)
๐‘‘ 2 ๐œƒ(๐‘ก)
๐‘”๐œƒ
=โˆ’
2
๐‘‘๐‘ก
๐‘™
Analytical solution:
ฮฉ = ๐‘”/๐‘™ natural frequency of the pendulum;
๐œƒ0 and ๐œ™ are constant determined by boundary conditions
Simple Harmonic pendulum with drag
force as a special case of second order DE
Drag force on a moving object, fd = - kv
For a pendulum, instantaneous velocity v = wl = l (dq/dt)
Hence, fd = - kl (dq/dt).
l
The net force on the forced pendulum along the
tangential direction
- kl (dq/dt).
dq
dq
๏‚ป ๏€ญmgq ๏€ญ kl
;
dt
dt
d 2r
d2
d 2q
m 2 ๏‚ป m 2 ๏€จ lq ๏€ฉ ๏€ฝ ml 2 ;
d t
dt
dt
d 2r
d 2q
g
k dq
g
dq
k
Fq ๏€ฝ m 2 ๏‚ฎ 2 ๏€ฝ ๏€ญ q ๏€ญ
๏‚บ ๏€ญ q ๏€ญq
;q ๏€ฝ
l
m dt
l
dt
m
d t
dt
Fq ๏€ฝ ๏€ญmg sin q ๏€ญ kl
fd
r
Simple Harmonic pendulum with drag force
as a special case of second order DE (cont.)
n(x)
๐‘ฅโ‰ก๐‘ก
๐‘ข ๐‘ฅ โ‰ก ๐œƒ(t)
๐‘Žโ‰ก๐‘ž
๐‘”
๐‘โ‰ก
๐‘™
๐‘›(๐‘ฅ) โ‰ก 0
l
fd
r
d 2q
dt 2
g
dq
k
๏€ฝ ๏€ญ q ๏€ญq
;q ๏€ฝ
l
dt
m
Analytical solution
Underdamped regime (small damping). Still oscillate,
but amplitude decay slowly over many period before
dying totally. q ๏€จ t ๏€ฉ ๏€ฝ q0 e๏€ญqt /2 sin ๏ƒฆ๏ƒง ๏ช ๏€ซ t ๏—2 ๏€ญ q 2 ๏ƒถ๏ƒท
๏ƒง
๏ƒจ
๏—๏€ฝ
4 ๏ƒท
๏ƒธ
g
the natural frequency of the system
l
Overdamped regime (very large damping), decay slowly
over several period before dying totally. q is dominated
2
๏ƒฆ qt
๏ƒถ
q
by exponential term.
2
๏€ญ๏ƒง ๏‚ฑ t
๏€ญ๏— ๏ƒท
q ๏€จ t ๏€ฉ ๏€ฝ q0 e
๏ƒง 2
๏ƒจ
4
๏ƒท
๏ƒธ
Critically damped regime, intermediate between
under- and overdamping case.
q ๏€จ t ๏€ฉ ๏€ฝ ๏€จq 0 ๏€ซ Ct ๏€ฉ e
๏€ญ
qt
2
Critically damped
Overdamped
q ๏€จ t ๏€ฉ ๏€ฝ q0
q ๏€จ t ๏€ฉ ๏€ฝ ๏€จq 0 ๏€ซ Ct ๏€ฉ e
๏ƒฆ qt
๏ƒถ
q2
2 ๏ƒท
๏ƒง
๏€ญ
๏‚ฑt
๏€ญ๏—
๏ƒง 2
๏ƒท
4
๏ƒจ
๏ƒธ
e
๏€ญ
qt
2
Underdamped
0.2
q ๏€จ t ๏€ฉ ๏€ฝ q0 e
๏€ญ qt /2
๏ƒฆ
q2
2
sin ๏ƒง ๏ช ๏€ซ t ๏— ๏€ญ
๏ƒง
4
๏ƒจ
0.1
2
0.1
0.2
4
6
8
10
๏ƒถ
๏ƒท
๏ƒท
๏ƒธ
See 2ODE_Pendulum.nb where
DSolve solves the three cases of a
damped pendulum analytically.
Adding driving force to the damped
oscillator: forced oscillator
- kl (dq/dt) + FD sin(๏—Dt)
๏—D frequency of
the applied force
dq
dq
Fq ๏€ฝ ๏€ญmg sin q ๏€ญ kl
๏€ซ FD sin ๏€จ ๏— D t ๏€ฉ ๏‚ป ๏€ญmgq ๏€ญ kl
๏€ซ FD sin ๏€จ ๏— D t ๏€ฉ ;
dt
dt
d 2r
d2
d 2q
Fq ๏€ฝ m 2 ๏‚ป m 2 ๏€จ lq ๏€ฉ ๏€ฝ ml 2 ;
d t
dt
dt
d 2r
d 2q
dq
Fq ๏€ฝ m 2 ๏€ฝ ml 2 ๏‚ป ๏€ญmgq ๏€ญ kl
๏€ซ FD sin ๏€จ ๏— D t ๏€ฉ
dt
d t
dt
d 2q
g
dq FD sin ๏€จ ๏— D t ๏€ฉ
k
๏‚ป ๏€ญ q ๏€ญq
๏€ซ
;q ๏€ฝ
2
l
dt
ml
m
dt
Analytical solution
q ๏€จ t ๏€ฉ ๏€ฝ q 0 sin ๏€จ ๏— D t ๏€ซ ๏ฆ ๏€ฉ
q0 ๏€ฝ
FD / (ml )
๏€จ๏—
2
๏€ญ ๏— 2D
๏€ฉ ๏€ซ ๏€จ q๏— ๏€ฉ
2
2
D
Resonance happens when ๏— D ๏€ฝ ๏— ๏€ฝ g / l
Forced oscillator: An example of
non homogeneous 2nd order DE
n(x)
๐‘ฅโ‰ก๐‘ก
๐‘ข ๐‘ฅ โ‰ก ๐œƒ(t)
๐‘Žโ‰ก๐‘ž
๐‘”
๐‘โ‰ก
๐‘™
๐น๐ท sin ๐›บ๐ท ๐‘ก
๐‘› ๐‘ฅ โ‰ก
๐‘š๐‘™
d 2q
dt 2
g
dq FD sin ๏€จ ๏— D t ๏€ฉ
๏€ฝ ๏€ญ q ๏€ญq
๏€ซ
l
dt
ml
Exercise: Forced oscillator
d 2q
dt 2
g
dq FD sin ๏€จ ๏— D t ๏€ฉ
๏€ฝ ๏€ญ q ๏€ญq
๏€ซ
l
dt
ml
Use DSolve to solve the forced oscillator. Plot on the same
graph the analytical solutions of q(t) for t from 0 to 10 T ,
where T= 2๏ฐ/๐›บ, ๐›บ = ๐‘”/๐‘™, for ๐›บ๐ท = 0.01๐›บ, 0.5๐›บ, 0.99๐›บ,
1.5๐›บ, 4๐›บ. Assume the boundary conditions q(t=0)=0;
dq/dt(t=0)=0; m=l=FD=1; q=0.
See forced_Pendulum.nb.
Second order Runge-Kutta (RK2) method
Consider a generic second order differential
equation.
d u ๏€จ x๏€ฉ
2
dx
2
๏€ฝ G ๏€จu ๏€ฉ
It can be numerically solved using second order
Runge-Kutta method. First, split the second order DE
into two first order parts:
v ๏€จ x๏€ฉ ๏€ฝ
du ๏€จ x ๏€ฉ
dv ๏€จ x ๏€ฉ
dx
dx
๏€ฝ G ๏€จu ๏€ฉ
Algorithm
Set boundary conditions: u(x=x0)=u0, uโ€™(x=x0)=v(x=x0)=v0.
calculate
calculate
1
u ๏€ฝ ui ๏€ซ vi ๏„x
2
1
v ๏€ฝ vi ๏€ซ G (u )๏„x
2
calculate
ui ๏€ซ1 ๏€ฝ ui ๏€ซ v ๏„x
calculate
vi ๏€ซ1 ๏€ฝ vi ๏€ซ G ๏€จ u ๏€ฉ ๏„x
Translating the SK2 algorithm into the case of
simple
pendulum
2
2
g
d u ๏€จ x๏€ฉ
dx
๏€ฝ G ๏€จu ๏€ฉ
2
v ๏€จ x๏€ฉ ๏€ฝ
dv ๏€จ x ๏€ฉ
G ๏€จ u ๏€ฉ ๏‚บ ๏€ญ q (t )
l
du ๏€จ x ๏€ฉ
dx
๏€ฝ G ๏€จu ๏€ฉ
dx
Set boundary conditions:
u(x=x0)=u0, uโ€™(x=x0)=v(x=x0)=v0
1
u ๏€ฝ ui ๏€ซ vi ๏„x
2
1
v ๏€ฝ vi ๏€ซ G (u )๏„x
2
ui ๏€ซ1 ๏€ฝ ui ๏€ซ v ๏„x
vi ๏€ซ1 ๏€ฝ vi ๏€ซ G ๏€จ u ๏€ฉ ๏„x
๐‘‘ ๐œƒ(๐‘ก)
๐‘”๐œƒ
=โˆ’
2
๐‘‘๐‘ก
๐‘™
w (t ) ๏€ฝ
dw ๏€จt ๏€ฉ
dq ๏€จ t ๏€ฉ
dt
๏€ฝ๏€ญ
gq ๏€จ t ๏€ฉ
dt
l
Set boundary conditions:
q(t=t0)= q0, qโ€™ (t=t0)=w(t=t0)=w0
1
2
1 ๏ƒฆ gq
w ๏€ฝ wi ๏€ซ ๏ƒง๏ƒง ๏€ญ
2๏ƒจ l
q ๏€ฝ qi ๏€ซ wi ๏„t
๏ƒถ
๏ƒท๏ƒท ๏„t
๏ƒธ
qi ๏€ซ1 ๏€ฝ qi ๏€ซ w๏„t
wi ๏€ซ1
๏ƒฆ gq
๏€ฝ wi ๏€ซ ๏ƒง๏ƒง ๏€ญ
๏ƒจ l
๏ƒถ
๏ƒท๏ƒท ๏„t
๏ƒธ
Exercise: Develop a code to implement SK2
for the case of the simple pendulum.
g
w
0
๏€ฝ
;q ๏€จ 0 ๏€ฉ ๏€ฝ 0
๏€จ
๏€ฉ
Boundary conditions:
l
See pendulum_RK2.nb
Translating the SK2 algorithm into the case of
damped
pendulum
2
๐‘‘ 2 ๐œƒ(๐‘ก)
๐‘”๐œƒ
d u ๏€จ x๏€ฉ
dx
2
v ๏€จ x๏€ฉ ๏€ฝ
dv ๏€จ x ๏€ฉ
๏€ฝ G ๏€จu ๏€ฉ
๐‘‘๐‘ก 2
du ๏€จ x ๏€ฉ
w (t ) ๏€ฝ
๐‘‘๐œƒ
=โˆ’
โˆ’๐‘ž
๐‘™
๐‘‘๐‘ก
dq ๏€จ t ๏€ฉ
dt
dw ๏€จ t ๏€ฉ
gq
๏€ฝ๏€ญ
๏€ญ qw ๏€จ t ๏€ฉ
dt
l
dx
g
๏€ฝ G ๏€จ u ๏€ฉ G ๏€จ u ๏€ฉ ๏‚บ ๏€ญ q (t ) ๏€ญ qw (t )
l
dx
Set boundary conditions:
Set boundary conditions:
u(x=x0)=u0, uโ€™(x=x0)=v(x=x0)=v0
q(t=t0)= q0, qโ€™ (t=t0)=w(t=t0)=w0
1
1
q ๏€ฝ qi ๏€ซ wi ๏„t
u ๏€ฝ ui ๏€ซ vi ๏„x
2
2
g
๏ƒฆ
๏ƒถ
w
๏€ญ
q
(
t
)
๏„
t
๏ƒง i 2l
๏ƒท
1
1๏ƒฆ g
๏ƒถ
๏ƒจ
๏ƒธ
v ๏€ฝ vi ๏€ซ G (u )๏„x
w ๏€ฝ wi ๏€ซ ๏ƒง ๏€ญ q (t ) ๏€ญ qw ๏ƒท ๏„t ๏ƒž w ๏€ฝ
2
2๏ƒจ l
๏ƒฆ 1
๏ƒถ
๏ƒธ
1
๏€ซ
q
๏„
t
๏ƒง 2
๏ƒท
๏ƒจ
๏ƒธ
ui ๏€ซ1 ๏€ฝ ui ๏€ซ v ๏„x
qi ๏€ซ1 ๏€ฝ qi ๏€ซ w๏„t
vi ๏€ซ1 ๏€ฝ vi ๏€ซ G ๏€จ u ๏€ฉ ๏„x
wi ๏€ซ1
๏ƒฆ gq
๏ƒถ
๏€ฝ wi ๏€ซ ๏ƒง๏ƒง ๏€ญ
๏€ญ qw ๏ƒท๏ƒท ๏„t
l
๏ƒจ
๏ƒธ
Exercise:
Develop a code to implement SK2 for the case of a
pendulum experiencing a drag force, with damping
coefficient q= 0.1* (4๏—), ๏—๏€ฝ ๐‘”/๐‘™, ๐‘™ = 1.0 m.
Boundary conditions: ฮธ 0 = 0.2; ๐œ” ๐‘ก = 0 = 0;
d 2q
dt 2
g
dq
๏€ฝ ๏€ญ q ๏€ญq
l
dt
See pendulum_RK2.nb
Exercise:
Develop a code to implement SK2 for the case of a
forced pendulum experiencing no drag force but a
driving force๐น๐ท sin ๐›บ๐ท ๐‘ก , ๏—๏€ฝ ๐‘”/๐‘™, ๐‘™ = 1.0 m,
m=1kg; ๐นD = 1N; ฮฉD =0.99 ๏—;
Boundary conditions: ฮธ 0 = 0.0; ๐œ” ๐‘ก = 0 = 0;
d q
2
dt
2
g
dq FD sin ๏€จ ๏— D t ๏€ฉ
๏€ฝ ๏€ญ q ๏€ญq
๏€ซ
l
dt
ml
Exercise: Stability of the total
energy a SHO in RK2.
๐œ”=
๐‘‘๐œƒ
,
๐‘‘๐‘ก
angular velocity. M=1kg; l=1m.
User your RK2 code to track the total energy for t running
g
w
0
๏€ฝ
;q ๏€จ 0 ๏€ฉ ๏€ฝ 0
from t=0 till t=25T; T= ๐‘”/๐‘™. Boundary conditions: ๏€จ ๏€ฉ
l
๐ธ๐‘– should remain constant throughout all ๐‘ก๐‘– .
Exercise: Develop a RK2 code for
planetary motion in polar
y
coordinates
E
S
q
O
๐ฟ
๐‘š๐‘Ÿ โˆ’ ๐‘š๐‘Ÿ
๐‘š๐‘Ÿ 2
where
2
๐บ๐‘€๐‘š ๐‘š๐‘Ÿ 2 ๐œƒ = ๐ฟ
=โˆ’ 2
๐‘Ÿ
๐‘‘2๐‘Ÿ
๐‘‘๐œƒ
๐‘Ÿ = 2 ;๐œƒ =
๐‘‘๐‘ก
๐‘‘๐‘ก
x
Velocity verlet algorithm
for solving the Newton
second law
Newtonโ€™s second law
โ€ขGiven a position-dependent force acting on
a particle, F(r), Newton second law
determines the acceleration of a particle, a.
d2r/dt2= F(r)/m
โ€ขThis is a second order differential equation.
โ€ขGiven F(r), we wish to know what are the
subsequent evolution of r(t), v(t) beginning
from the boundary values of r(0), v(0).
โ€ขPreviously we solve the second order DE
using RK2 to obtain r(t), v(t).
Verlet algorithms
โ€ขThe equation d2r/dt2=F(r)/m can be integrated
to obtain r(t), v(t), via a numerical scheme:
Verlet algoritm
โ€ขThree types: ordinary Verlet, velocity Verlet,
leap frog verlet.
โ€ขIn the following, we shall denote the RHS as
F(r)/m โ†’ a
So that d2r/dt2=F(r)/m
โ†“
d2r/dt2= a
โ€ขSee http://en.wikipedia.org/wiki/Verlet_integration
Velocity Verlet algorithm
Global error in velocity Verlet algorithm
โ€ขThe global (cumulative) error in x over a
constant interval of time is given by
ฮ”๐‘ฅ ~ O(ฮ”t2)
โ€ขBecause the velocity is determined in a noncumulative way from the positions in the
Verlet integrator, the global error in velocity
is also
ฮ”v ~ O(ฮ”t2)
Exercise: SHO
โ€ขSolve for x(t), v(t), for a simple harmonic
oscillator with constant k, mass m, initial
displacement x0, and velocity v0 =0, using
velocity Verlet algorithm.
โ€ขFor SHO, F = -kx โ‡’ a = -(k/m)x
d2x/dt2 = -(k/m)x
See verlet_algorithm_samples.nb
Exercise: 2D free-fall projectile
โ€ขSolve for x(t), y(t), v(t) of a 2D free-fall projectile
with initial speed v0=0 and launching angle q0
using velocity Verlet algorithm.
โ€ขFor 2D projectile motion, ๐‘ญ = โˆ’๐‘š๐‘”๐‘ฆ + 0๐‘ฅ.
a = ๐‘ญ/m
ax๐‘ฅ + ay๐‘ฆ = 0๐‘ฅ โˆ’ ๐‘”๐‘ฆ
d2x/dt2๐‘ฅ+ d2y/dt2๐‘ฅ= โˆ’๐‘”๐‘ฆ
โ‡’ d2x/dt2 = 0, d2y/dt2 = โˆ’๐‘”
See verlet_algorithm_samples.nb
Exercise: Scattering of a projectile charge
via Coulomb force
F=F๐‘Ÿ =
๐‘˜๐‘ž๐‘„
๐‘Ÿ
2
2
(๐‘ฅโˆ’๐‘ฅ๐‘„ ) +(๐‘ฆโˆ’๐‘ฆ๐‘„ )
=
๐‘˜๐‘ž๐‘„
๐‘Ÿ
2
๐‘…
q
๐’“๐‘ž = (๐‘ฅ, ๐‘ฆ)
๐‘ฆ
(projectile, with mass m)
R=(rq โ€“ rQ)=R๐‘Ÿ, ๐‘Ÿ =
๐’“qโˆ’๐’“๐‘„
๐’“qโˆ’๐’“๐‘„
Q(Fixed)
๐’“๐‘„ = ๐‘ฅ๐‘„, ๐‘ฆ๐‘„
rQ
o
๐‘ฅ
Notation for scattering of a projectile
charge via Coulomb force
โ€ข ๐’“๐‘„ = ๐‘ฅ๐‘„, ๐‘ฆ๐‘„ ; ๐’“q = (๐‘ฅ, ๐‘ฆ)
โ€ข๐‘ญ =
๐‘ž๐‘„
๐‘˜
๐‘Ÿ;
2
2
(๐‘ฅโˆ’๐‘ฅ๐‘„ ) +(๐‘ฆโˆ’๐‘ฆ๐‘„ )
โ€ขโ‡’
โ€ข ๐‘Ž๐‘ฆ =
โ€ข ๐‘Ž๐‘ฅ =
1
๐‘ญโˆ™๐‘ฆ
๐‘š
1
๐‘ญโˆ™๐‘ฅ
๐‘š
=
=
๐’“q โˆ’ ๐’“๐‘„
๐‘Ÿ=
๐’“q โˆ’ ๐’“๐‘„
๐‘˜
๐‘ž๐‘„
๐‘Ÿ
๐‘š (๐‘ฅโˆ’๐‘ฅ๐‘„ )2 +(๐‘ฆโˆ’๐‘ฆ๐‘„ )2
๐‘˜
๐‘ž๐‘„
๐‘Ÿ
2
2
๐‘š (๐‘ฅโˆ’๐‘ฅ๐‘„ ) +(๐‘ฆโˆ’๐‘ฆ๐‘„ )
โˆ™๐‘ฆ =
โˆ™๐‘ฅ=
๐‘‘2๐‘ฆ
,
๐‘‘๐‘ก 2
๐‘‘2๐‘ฅ
.
2
๐‘‘๐‘ก
The equations required by Verlet
algorithm
โ€ข ๐’“๐‘„ = ๐‘ฅ๐‘„, ๐‘ฆ๐‘„ ; ๐’“q = (๐‘ฅ, ๐‘ฆ)
๐‘‘2 ๐‘ฆ
๐‘‘๐‘ก 2
=
๐’“q โˆ’ ๐’“๐‘„
๐‘Ÿ=
๐’“q โˆ’ ๐’“๐‘„
๐‘˜๐‘ž๐‘„
๐‘Ÿโˆ™๐‘ฆ
,
2
2
๐‘š (๐‘ฅโˆ’๐‘ฅ๐‘„ ) +(๐‘ฆโˆ’๐‘ฆ๐‘„ )
๐‘‘2 ๐‘ฅ ๐‘˜๐‘ž๐‘„
๐‘Ÿโˆ™๐‘ฅ
=
2
๐‘‘๐‘ก
๐‘š (๐‘ฅ โˆ’ ๐‘ฅ๐‘„ )2 +(๐‘ฆ โˆ’ ๐‘ฆ๐‘„ )2
See verlet_algorithm_2D_coulomb_scatterings.nb
Störmer-Verlet integration
algorithm
๐‘ฅ๐‘›+1 = 2๐‘ฅ๐‘› โˆ’ ๐‘ฅ๐‘›โˆ’1 + ๐‘Ž๐‘› โˆ†๐‘ก
2
๐‘ฃ๐‘›+1 = (๐‘ฅ๐‘›+1 โˆ’๐‘ฅ๐‘› )/โˆ†๐‘ก
โ€ข Another variant of Verlet algoritm
โ€ข Use this for integrating dynamical system with
a velocity-dependent acceleration, such as
Lorentz force on a moving charge particle.
โ€ข The cumulative error in the velocity is larger
than that in velocity Verlet algorithm
Exercise: Charge moving in a
magnetic field
โ€ข A charge (mass m and charge q) moving with velocity v
=(vx, vy , vz) in a magnetic field B=(Bx, By , Bz) experiences a
velocity-dependent Lorentz force F=(Fx, Fy , Fz) = q v × B.
Develop a code based on the Störmer-Verlet integration
algorithm to simulate the dynamical path of the charge
particle moving through the magnetic field. Assume: q=+1
unit, mass m = 1 unit, initially located at (0,0,0), initial
velocity (v0x,v0y, v0z), v0x=v0y=0.1 unit, v0z =0.05 unit,
B=(0, 0, Bz), Bz = 0.1 unit. You should see a helical
trajectory circulating about the z-direction.
โ€ข verlet_algorithm_3D_coulomb_helix.nb
Related documents