Download grade 8 and 9 geometry exercises - One-Stop-Math-Shop

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
GRADE 8 AND 9 GEOMETRY EXERCISES
Exercise 1
οƒΏ Complete the theorem:
The sum of the angles on a straight line = ___________o
Determine the values of the following angles (π‘Ž, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔 and β„Ž) in
the diagram below. Show ALL calculations.
1.1
πŸ‘πŸ“°
𝒂
1.2
πŸ‘πŸ“°
πŸ–πŸŽ°
𝒃
1.3
𝒄
πŸ”πŸ°
πŸ“πŸ’°
𝒅
1.4
𝒆
𝒇 𝟏𝟏𝟎°
πŸ’πŸ‘°
1
www.one-stop-math-shop.com
D Cyster © October 2016
1.5
π’ˆ
πŸ’πŸ°
πŸπŸ‘πŸ—° 𝒉
Exercise 2
οƒΏ Complete the theorem:
When two straight lines intercept (β€œcut”) each other, the vertically
opposite angels are______________________.
Determine the values of the unknown angels (𝑖, 𝑗, π‘˜, 𝑙, π‘š, 𝑛) in the diagram
below. Sho ALL calculations.
2.1
πŸπŸ‘πŸ‘°
π’Š
2.2
πŸ”πŸ°
𝒋
2.3
π’Œ
πŸ’πŸ°
𝒍
πŸπŸ–°
2
www.one-stop-math-shop.com
D Cyster © October 2016
2. 4
π’Ž
πŸ‘πŸ•°
πŸ—πŸ–°
𝒏
Exercise 3
οƒΏ Complete the theorem:
When two parallel lines are intercepted by a diagonal line, then:
ο‚·
the pair of corresponding angles are _____________________________.
ο‚·
the __________________________ of the co-interior angles on the same
side of the diagonal line = 180o.
ο‚·
the _________________________________ angles are equal.
3.1
In the diagram below, PQ is parallel to RS. AB is a diagonal line,
intercepting PQ and RS at L and M respectively.
A
L1 4
P
2
M1 4
2 3
R
Q
146o
S
B
Μ‚4 , 𝑀
Μ‚2 .
Determine, by giving reasons, the size of 𝐿̂1 , 𝐿̂2 , 𝑀
3
www.one-stop-math-shop.com
D Cyster © October 2016
3.2
Μ‚ = 43°.
ABCD is a parallelogram. AD || BC, AB || DC, 𝐴𝐹̂ 𝐸 = 36° and 𝐷
E
A
36o
F1
D
43o
2 3
1
B
2
C
Determine, by giving reasons, the size of 𝐹̂3 , 𝐢̂1 , 𝐴̂ en 𝐡̂.
3.3
PQRS is a trapezium. PQ || TU, TU || RS, PR || VZ and π‘‰π‘ŒΜ‚π‘‡ = 62°.
V
X1
2
P
Q
3 4
62o Y1
2 3
T1
2
U1
2
3
2
4
R
S1
Z
Determine, by giving reasons, the size of 𝑇̂1 , 𝑆̂3 , 𝑋̂4 , 𝑃̂, 𝑅̂ and 𝑆̂4 .
4
www.one-stop-math-shop.com
D Cyster © October 2016
Exercise 4
οƒΏ Complete the theorem:
o The sum of the interior angles of a triangle = ________________o
o In a(n) ___________________________ triangle, the angles opposite the
equal sides, are equal.
o The exterior angle of a triangle is _________________________ to the
_______________________ of opposite interior angles.
Determine the size of the unknown angles, indicated by variables
π‘Ž, 𝑏, 𝑐, π‘₯, 𝑦 or 𝑧:
4.1
74o
𝒂
4.2
𝒃
61o
39o
4.3
77o
𝒄
86o
5
www.one-stop-math-shop.com
D Cyster © October 2016
4.4
70o
55o
𝒙
4.5
68o
𝒛
π’š
4.6
In the diagram below, AB = AC and DE || BC.
A
𝒄
𝒃 E
𝒙
D 𝒂
B
4.7
65o
C
D
48o
E
π’š
53o
F
G
6
www.one-stop-math-shop.com
D Cyster © October 2016
4.8
L
O
52o
𝒛
M
86o
N
4.9
L
𝒂
M
N
71o
42o
O
4.10
𝒂 𝒃
𝒛
𝒙
π’š
πŸ•πŸ°
oooOooo
7
www.one-stop-math-shop.com
D Cyster © October 2016
The sum of the angles on a straight line = 180o
1.1
π‘Ž = 180° βˆ’ 35°
∴ π‘Ž = 145°
1.2
π‘Ž = 180° βˆ’ (35° + 80°)
π‘Ž = 180° βˆ’ 115°
∴ π‘Ž = 65°
1.3
𝑐 = 90° βˆ’ 62°
∴ 𝑐 = 28°
𝑑 = 90° βˆ’ 54°
∴ 𝑑 = 36°
𝑒 = 180° βˆ’ 43°
∴ 𝑒 = 137°
𝑓 = 180° βˆ’ 110°
∴ 𝑓 = 70°
1.5
𝑔 = 180° βˆ’ 41°
∴ 𝑔 = 139°
β„Ž = 180° βˆ’ 139°
∴ β„Ž = 41°
When two straight lines intercept (β€œcut”) each other, the vertically opposite
angels are equal.
2.1
2.3
𝑖 = 133°
π‘˜ = 28°;
2.2
2.4
𝑙 = 41°
𝑗 = 61°
π‘š = 37°;
𝑛 = 98°
8
www.one-stop-math-shop.com
D Cyster © October 2016
SHORTENED REASONS:
ο‚· Vertically Opposite
ο‚· Complementary
(angles with a sum of 90o)
ο‚· Supplementary
(angles with a sum of 180o)
ο‚· Alternate
ο‚· Corresponding
ο‚· Angles
ο‚· Sum of interior angles of a
triangle = 180o
ο‚· Exterior angles of a triangle = sum
of opposite interior angles
ο‚· In an isoscolese triangle, the angles
opposite the equal sides, are equal.
⟺
⟺
vert. opp.
compl.
⟺
⟺
⟺
⇔
suppl.
alt.
cor.
βˆ β€²π‘ 
⟺
int. βˆ β€² 𝑠 π‘œπ‘“ βˆ†
⟺
ext. ∠ π‘œπ‘“ βˆ†
⟺
βˆ β€² 𝑠 π‘œπ‘π‘. π‘’π‘žπ‘’π‘Žπ‘™ 𝑠𝑖𝑑𝑒𝑠
When two parallel lines are intercepted by a diagonal line, then:
ο‚·
the pair of corresponding angles are equal.
ο‚·
the sum of the co-interior angles on the same side of the
diagonal line = 180o.
ο‚·
the alternate angles are equal.
3.1
𝐿̂1 = 146° … (vert. opp. )
𝐿̂2 = 180° βˆ’ 146° … (𝑠𝑒𝑝𝑝𝑙. βˆ β€² 𝑠)
= 34°
Μ‚4 = 180° βˆ’ 146° … (π‘π‘œ βˆ’ 𝑖𝑛𝑑. βˆ β€² 𝑠, 𝑃𝑄||𝑅𝑆)
𝑀
= 34°
Μ‚2 = 𝐿̂2 = 34° … (cor. βˆ β€² 𝑠, 𝑃𝑄||𝑅𝑆)
𝑀
3.2
𝐹̂3 = 180° βˆ’ 36° … (𝑠𝑒𝑝𝑝𝑙. βˆ β€² 𝑒)
9
www.one-stop-math-shop.com
D Cyster © October 2016
= 144°
𝐢̂1 = 36° … (cor. βˆ β€² 𝑠, 𝐴𝐷||𝐡𝐢)
Μ‚
𝐴̂ = 180° βˆ’ 𝐷
= 180° βˆ’ 43°
= 137°
… (π‘π‘œ βˆ’ 𝑖𝑛𝑑. βˆ β€² 𝑠, 𝐴𝐡||𝐷𝐢)
𝐡̂ = 180° βˆ’ 𝐴̂
… (π‘π‘œ βˆ’ 𝑖𝑛𝑑. βˆ β€² 𝑠, 𝐴𝐷||𝐡𝐢)
= 180° βˆ’ 137°
= 43°
3.3
𝑇̂1 = 62°
… (π‘π‘œ βˆ’ 𝑖𝑛𝑑. βˆ β€² 𝑠, 𝑃𝑅||𝑉𝑍)
𝑆̂3 = 62°
… (cor. βˆ β€² 𝑠, π‘‡π‘ˆ||𝑅𝑆)
𝑋̂4 = 𝑆̂3
= 62°
… (alt. βˆ β€² 𝑒, 𝑃𝑄||𝑅𝑆)
𝑃̂ = 𝑋̂4
= 62°
… (cor. βˆ β€² 𝑠, 𝑃𝑅||𝑉𝑍)
𝑅̂ = 180° βˆ’ 𝑃̂
= 180° βˆ’ 62°
= 118°
… (π‘π‘œ βˆ’ 𝑖𝑛𝑑. βˆ β€² 𝑠, 𝑃𝑄||𝑅𝑆)
𝑆̂4 = 180° βˆ’ 𝑆̂3
= 180° βˆ’ 62°
= 118°
… (𝑠𝑒𝑝𝑝𝑙. βˆ β€² 𝑠)
10
www.one-stop-math-shop.com
D Cyster © October 2016
o The sum of the interior angles of a triangle = 180o
o In a(n) isosceles triangle, the angles opposite the equal sides, are
eqaul.
o The exterior angle of a triangle is equal to the sum of opposite interior
angles.
4.1
π‘Ž = 180° βˆ’ (90° + 74°)
= 180° βˆ’ 164°
= 16°
… (int. βˆ β€² 𝑠 π‘œπ‘“ βˆ†)
4.2
𝑏 = 180° βˆ’ (39° + 61°)
= 180° βˆ’ 100°
= 80°
… (int. βˆ β€² 𝑠 π‘œπ‘“ βˆ†)
4.3
𝑐 = 180° βˆ’ (77° + 86°)
= 180° βˆ’ (163°)
= 17°
… (int. βˆ β€² 𝑠 π‘œπ‘“ βˆ†)
4.4
π‘₯ = 55°
… (βˆ β€² 𝑠 π‘œπ‘π‘. π‘’π‘žπ‘’π‘Žπ‘™ 𝑠𝑖𝑑𝑒𝑠)
4.5
𝑦 = 68°
… (βˆ β€² 𝑠 π‘œπ‘π‘. π‘’π‘žπ‘’π‘Žπ‘™ 𝑠𝑖𝑑𝑒𝑠)
∴ 𝑧 = 180° βˆ’ 2(68°)
= 180° βˆ’ 136°
= 44°
… (int. βˆ β€² 𝑠 π‘œπ‘“ βˆ†)
π‘Ž = 𝐡̂
= 65°
… (π‘π‘œπ‘Ÿ. βˆ β€² 𝑠, 𝐷𝐸||𝐡𝐢)
𝑏 = π‘Ž = 65°
… (βˆ β€² 𝑠 π‘œπ‘π‘. π‘’π‘žπ‘’π‘Žπ‘™ 𝑠𝑖𝑑𝑒𝑠)
∴ 𝑐 = 180° βˆ’ 2(65°)
= 180° βˆ’ 130°
= 50°
… (int. βˆ β€² 𝑠 π‘œπ‘“ βˆ†)
π‘₯ = 180° βˆ’ 𝑏
= 180° βˆ’ 65°
= 115°
… (𝑠𝑒𝑝𝑝𝑙. βˆ β€² 𝑠)
4.6
11
www.one-stop-math-shop.com
D Cyster © October 2016
4.7
Μ‚ + 𝐸̂
𝑦=𝐷
= 48° + 53°
= 101°
… (ext. ∠ π‘œπ‘“ βˆ†)
4.8
Μ‚
𝑧 = 𝐿̂ + 𝑁
= 86° + 52°
= 138°
… (ext. ∠ π‘œπ‘“ βˆ†)
4.9
̂𝑁
𝐿̂ + 𝑂̂ = 𝑂𝑀
∴ π‘Ž + 42° = 71°
π‘Ž = 71° βˆ’ 42°
= 29°
… (ext. ∠ π‘œπ‘“ βˆ†)
4.10 π‘Ž = 72°
… (βˆ β€² 𝑠 π‘œπ‘π‘. π‘’π‘žπ‘’π‘Žπ‘™ 𝑠𝑖𝑑𝑒𝑠)
𝑏 = 180° βˆ’ π‘Ž
= 180° βˆ’ 72°
= 108°
… (𝑠𝑒𝑝𝑝𝑙. βˆ β€² 𝑠)
π‘₯ = 180° βˆ’ 2(72°)
= 180° βˆ’ 144°
= 36°
… (int. βˆ β€² 𝑠 π‘œπ‘“ βˆ†)
𝑦 = 90° βˆ’ 72°
= 18°
… (compl. βˆ β€² 𝑒)
𝑧 = 180° βˆ’ (90° + 𝑦)
= 180° βˆ’ (90° + 18°)
= 180° βˆ’ 108°
= 72°
… (int. βˆ β€² 𝑠 π‘œπ‘“ βˆ†)
oooOooo
12
www.one-stop-math-shop.com
D Cyster © October 2016
Related documents