Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
On the enhancement of the Lya equivalent width by a multiphase interstellar medium – or: debunking the Neufeld scenario Peter Laursen With Florent Duval & Göran Östlin (OKC) www.dark-cosmology.dk/~pela Dark Cosmology Centre | Niels Bohr Institutet | Københavns Universitet Motivation Lyman α emitting galaxies (LAEs) are important probes of the high-redshift Universe: • Epoch of Reionization • Baryonic Acoustic Oscillations • Luminosity function (faint end) These are statistical properties. Individual observations are hampered by insufficient knowledge about radiative transfer effects. One way, however, to probe individual galaxies is by looking at the equivalent width of Lyα. 2 Motivation Equivalent width: Boost: “Max 240 Å!”, say Charlot & Fall (1993), and Schaerer (2003). “But… but…”, say Kudritzki et al. (2000), Malhotra & Rhoads (2002), Rhoads et al. (2003), Dawson et al. (2004), Hu et al. (2004), Shimasaku et al. (2006), Ouchi et al. (2008), Nilsson et al. (2009), Kashikawa et al. (2011), etc. “Clumpiness!”, say Chapman et al. (2005), Finkelstein et al. (2007, 2008, 2009a,b,c, 2011a,b), Dayal et al. (2008, 2009, 2010, 2011), Niino et al. (2009), Yuma et al. (2010), Kobayashi et al. (2010), Blanc et al. (2011), Nakajima et al. (2012), etc. 3 Multiphase medium Neufeld (1991); Hansen & Oh (2006) 4 Neufeld 1991 Enter Hansen & Oh (2006) 5 Systematic approach MOCALATA (Laursen et al. 2009) 6 Varying the input parameters “Fiducial” model: 3 1 cm-3 Z 0 km s-1 0 km s-1 0 cm-3 0 Central 0 0 104 K; 106 K 100 pc • Covering factor, fc • Cloud HI density, nHI,cl • Cloud dust density ( metallicity, Zcl) • Cloud velocity dispersion, σV,cl • Galactic outflow velocity, Vout • Intercloud HI density, nHI,ICM • Intercloud dust density ( ZICM) • Emission scale length, H • Emission/cloud correlation factor, Pcl • Intrinsic line width, σline • Gas temperature, Tcl; TICM • Cloud size distribution, rcl,min; rcl,max; β 7 Varying the input parameters (on at a time) • Covering factor, fc 8 Varying the input parameters • Cloud HI density, nHI,cl 9 Varying the input parameters • Cloud dust density ( metallicity, Zcl) 10 Varying the input parameters • Cloud velocity dispersion, σV,cl 11 Varying the input parameters • Galactic outflow velocity, Vout 12 Varying the input parameters • Intercloud HI density, nHI,ICM 13 Varying the input parameters • Intercloud dust density ( ZICM) 14 Varying the input parameters • Emission scale length, H 15 Varying the input parameters • Emission/cloud correlation factor, Pcl 16 Varying the input parameters • Intrinsic line width, σline 17 Varying the input parameters • Gas temperature, Tcl; TICM 18 Varying the input parameters • Cloud size distribution, rcl,min; rcl,max; β 19 From ideal to semi-realistic (varying in unison) 20 From ideal to semi-realistic (each dot is the result of a model) 21 From ideal to semi-realistic 22 From ideal to semi-realistic 23 From ideal to semi-realistic 24 Line profiles Average spectrum of boost-yielding (extreme) models — not realistic (too narrow) 25 Alternative scenarios • Top-heavy IMF (Malhotra & Rhoads 02) • Population III stars (Schaerer 03, Tumlinson 03) • Delayed escape of Lyα (Roy+ 10, Xu+ 11) • AGN activity (<5%, Wang+ 04, Gawiser+ 06) • Viewing angle (Laursen 07/09, Verhamme 12) • Cooling radiation (Dijkstra+ 09, Laursen+ 09, Dayal+ 10) • Measuring errors (Henry+ 10) • Star formation stochasticity (Forero-Romero & Dijkstra 12) • Inhomogeneous escape (Hayes+ 07) 26 Alternative scenarios • Viewing angle (Laursen 07/09, Verhamme 12) 27 Viewing angle (even in a homogeneou s medium, without dust, a “boost” can be measured) 28 Alternative scenarios • Cooling radiation (Dijkstra+ 09, Laursen+ 09, Dayal+ 10) 29 Conclusion: • No astrophysically realistic scenario can boost the Lyα equivalent width by clumpiness alone. Rather, a combination of clumpiness, orientation orientation, radiation etc. adds to cool ingradiation, top-heavy IMF, cooling create a boost. • Whereas in the scenario originally proposed by Neufeld the boost increases with cloud covering factor, even a small cloud velocity dispersion inverts this relation. 30