Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Seismoelectric Field Measurements Performance, Problems, Perspectives K. Iwanowski-Strahser, M. Strahser, W. Rabbel Christian Albrecht University of Kiel, Germany Seismoeletric Field Measurements – Performance, Problems, Perspectives What's seismoelectrics? Seismoeletric Field Measurements – Performance, Problems, Perspectives Outline 1) History of seismoelectrics in Kiel 2) Seismoeletric field measurements 3) Data examples: ● 1 - Location Lutzhorn (high quality) ● 2 - Location Augustenhof (2.5 D) ● 3 - Location Menzlin (GPR) 4) Combined results and interpretation 5) Problems within the identification of seismoelectric signals 6) Conclusions and outlook Seismoeletric Field Measurements – Performance, Problems, Perspectives History of seismoelectrics in Kiel from 2001 ● Establishment of measurement configuration ● First measurements ● Basic data processing [...] Data acquisition at different locations ● Improvement of measurement techniques and data processing ● Comparison with different geophysical methods ● Effect of parameter changes on seismoelectric signals to 2008 ● Seismoeletric Field Measurements – Performance, Problems, Perspectives Outline 1) History of seismoelectrics in Kiel 2) Seismoeletric field measurements 3) Data examples: ● 1 - Location Lutzhorn (high quality) ● 2 - Location Augustenhof (2.5 D) ● 3 - Location Menzlin 5) Combined results and interpretation 6) Problems within the identification of seismoelectric signals 7) Conclusions and outlook Seismoeletric Field Measurements – Performance, Problems, Perspectives 1) Coseismic Wavefield (Strahser, 2006) (Haines et al. 2007) Seismoeletric Field Measurements – Performance, Problems, Perspectives 2) Converted seismoelecric signals (Haines, 2004) Seismoelectric field measurements Sources (10647 blows) (davon 7791 hammer blows 2856 weight drop blows) Seismoeletric Field Measurements – Performance, Problems, Perspectives 3) Data examples: 1 - Location Lutzhorn Locations footpath location forest location Seismoeletric Field Measurements – Performance, Problems, Perspectives Outline 1) History of seismoelectrics in Kiel 2) Seismoeletric field measurements 3) Data examples: ● 1 - Location Lutzhorn (high quality) ● 2 - Location Augustenhof (2.5 D) ● 3 - Location Menzlin 4) Combined results and interpretation 5) Problems within the identification of seismoelectric signals 6) Conclusions and outlook Geoelectric GPR Seismoelectric Seismic time/ns depth/m Geoelectric GPR depth/m time/ms offset/m Seismic Seismoelectric Seismoeletric Field Measurements – Performance, Problems, Perspectives 3. Data examples: 1 - Location Lutzhorn Identification of seismoelectric signals no moveout of converted signals ● no correspondence in seismics ● no noise generated by data acquisition ● amplitude analysis ● Example of amplitude analysis conductivity vp seismoelectric GPR velocities Seismoeletric Field Measurements – Performance, Problems, Perspectives Outline 1) History of seismoelectrics in Kiel 2) Seismoeletric field measurements 3) Data examples: ● 1 - Location Lutzhorn (high quality) ● 2 - Location Augustenhof (2.5 D) ● 3 - Location Menzlin 4) Combined results and interpretation 5) Problems within the identification of seismoelectric signals 6) Conclusions and outlook Seismoeletric Field Measurements – Performance, Problems, Perspectives 3) Data examples: 2 - Location Augustenhof (2.5 D measurements) Configuration and survey area Results of the seismic measurements 200 m/s 400 m/s 1500 m/s Results of the geoelectric measurements Amplitude analysis Comparison of the layer boundaries - Augustenhof depth profile 0m profile2 depth profile 0m profile4 depth/m depth/m profile1 depth/m depth profile 12m profile1 depth profile 12m profile4 depth/m depth/m depth profile 0m profile1 profile3 profile4 profile2 seismoelectric vp conductivity Seismoeletric Field Measurements – Performance, Problems, Perspectives Outline 1) History of seismoelectrics in Kiel 2) Seismoeletric field measurements 3) Data examples: ● 1 - Location Lutzhorn (high quality) ● 2 - Location Augustenhof (2.5 D) ● 3 - Location Menzlin 4) Combined results and interpretation 5) Problems within the identification of seismoelectric signals 6) Conclusions and outlook Menzlin Strahser (2006) Menzlin Strahser (2006) Menzlin Strahser (2006) Seismoeletric Field Measurements – Performance, Problems, Perspectives Outline 1) History of seismoelectrics in Kiel 2) Seismoeletric field measurements 3) Data examples: ● 1 - Location Lutzhorn (high quality) ● 2 - Location Augustenhof (2.5 D) ● 3 - Location Menzlin 4) Combined results and interpretation 5) Problems within the identification of seismoelectric signals 6) Conclusions and outlook Combined results and interpretation Seismoeletric Field Measurements – Performance, Problems, Perspectives 4) Combined results and interpretation type and depth of layer boundaries: most conversions occurred at groundwater level ● no layer boundary (seismoelectric) below ~7 m ● converted signals above the saturated zone ● no conversions occurred below the groundwater level ● other layer boundaries: sand-gravel, forest soil - dry sand, sand - boulder clay ● Seismoeletric Field Measurements – Performance, Problems, Perspectives 4) Combined results and interpretation Soil conditions: moderate correlation between the data quality and the hardness and dryness of the ground ● solid soil has a positive effect on signal strength ● wet conditions generally mean bad data quality ● favorable conditions: sandy ground (preferably dry rather than wet) ● data obtained in open fields seem to be better than those in forest areas ● Seismoeletric Field Measurements – Performance, Problems, Perspectives 4) Combined results and interpretation Frequency of occurrence and quality of the arrivals: ratio of shotpoints at which a conversion occurred relative to all shotpoints ● relative frequency of 50 % ● at Lutzhorn converted waves were measured at almost every shotpoint (though sledge hammer) ● optimal: hard solid dry ground and a strong source ● Comparison with seismic, geoelectric and GPR: interpretation remains difficult ● layer boundaries can most often be seen in all methods ● not possible to get the influence of a single parameter ● Seismoeletric Field Measurements – Performance, Problems, Perspectives 4) Combined results and interpretation conclusions for subsoil parameters ● ● our measurements suggest that changes in vp are important for generation of seismoelectric conversions good correlation with geoelectric (Augustenhof) and GPR ( Menzlin) contrasts in el. resistivity and dielectric permittivity important? ● most conversions at groundwater level large contrasts in Vp, saturation, dielectric permittivity and electric conductivity Seismoeletric Field Measurements – Performance, Problems, Perspectives 4) Combined results and interpretation conclusions for subsoil parameters Low conductivity, high pH value and high permeability seem to improve the signal quality ● ● Generally contrasts in many parameters, if strong enough, seem to be able to generate converted signals Detailed informations are required for the interpretation of seismoelectric measurements Seismoeletric Field Measurements – Performance, Problems, Perspectives Outline 1) History of seismoelectrics in Kiel 2) Seismoeletric field measurements 3) Data examples: ● 1 - Location Lutzhorn (high quality) ● 2 - Location Augustenhof (2.5 D) ● 3 - Location Menzlin 4) Combined results and interpretation 5) Problems within the identification of seismoelectric signals 6) Conclusions and outlook Seismoeletric Field Measurements – Performance, Problems, Perspectives 5) Problems within the Identification of seismoelectric signals a) Covering of the converted signals with the coseismic wavefield Seismoeletric Field Measurements – Performance, Problems, Perspectives 5) Problems within the Identification of seismoelectric signals b) Different polarities complicate the identification of the converted signal offset/m c) 50 Hz noise time/ms data example, 12m dipole length offset/m shot point 36 m time/ms data example after the application of a 50 Hz filter (e.g. Butler & Russel, 2003) shot point 36 m Seismoeletric Field Measurements – Performance, Problems, Perspectives Outline 1) History of seismoelectrics in Kiel 2) Seismoeletric field measurements 3) Data examples: ● 1 - Location Lutzhorn (high quality) ● 2 - Location Augustenhof (2.5 D) ● 3 - Location Menzlin 4) Combined results and interpretation 5) Problems within the identification of seismoelectric signals 6) Conclusions and outlook Seismoeletric Field Measurements – Performance, Problems, Perspectives 6) Conclusions and Outlook seismoelectric conversions were measurable at almost every location ● the signals are traceable on parallel profiles (example Augustenhof) ● Measured layer boundaries are mostly seen with all geophysical methods ● in many cases the groundwater level is the origin of the conversions ● ● changes in vp seem to be important changes in electric conductivity and dielectric permittivity constants are possibly important as well ● low electric conductivity, high permeability and high pH value seem to improve the measurements ● Seismoeletric Field Measurements – Performance, Problems, Perspectives 6) Conclusions and Outlook ● Many questions remain Did we actually measure real converted waves? ● Why can't we measure any signals below the groundwater level? ● problems with the identification of the signals ● Despite of clear seismoelectric signals, there is still a long way to go before using seismoelectric measurements as a applied geophysical method. Seismoeletric Field Measurements – Performance, Problems, Perspectives 6) Conclusions and Outlook ● field measurements alone do not suffice to answer the question about the influence of single parameters and to get quantitative results. reasonable to combine theory/modeling and field measurements ● compare with modeling results ● measurements at sites with controlled subsurface conditions ● 50 Hz problem will compromise the measurements ● measurents of converted signals of greater depth ● THANK YOU VERY MUCH FOR YOUR ATTENTION! Seismoelectric Field Measurements Performance, Problems, Perspectives K. Iwanowski-Strahser, M. Strahser, W. Rabbel Christian-Albrechts-University of Kiel, Germany Seismoelektrische Messungen im Vergleich mit anderen geophysikalischen Verfahren von Katja Iwanowski Betreuer: Prof. Dr. W. Rabbel Seismoeletric Field Measurements – Performance, Problems, Perspectives 5) Problems within the Identification of seismoelectric signals a) Arrivals with moveout have no correspondence in seismic data depth profile 15 m depth profile 29 m depth/m depth/m depth/m seismoelectric layer 1 seismoelectric depth profile 30 m layer 1 seismoelectric layer 2 depth/m depth profile 16 m seismoelectric layer 2 depth profile 13 m depth profile 33 m depth profile 12 m seismoelectric layer 1 seismoelectric GPR velocity vp seismoelectric layer 2 depth/m depth/m depth/m depth/m seismoelectric conductivity depth profile 16 m Seismoelektrische Messungen und Auswertungen im Vergleich mit anderen geophysikalischen Verfahren 1) Seismoelektrische Theorie und Anwendung im Feld Elektrische Doppelschicht (Abb. aus Fourie, 2003) Seismoelektrische Messungen und Auswertungen im Vergleich mit anderen geophysikalischen Verfahren 1. Seismoelektrische Theorie und Anwendung im Feld Grundgleichungen der Seismoelektrik Biot Transportgleichungen Maxwell (Formeln nach Pride, 1997) Seismoelektrische Messungen und Auswertungen im Vergleich mit anderen geophysikalischen Verfahren Seismoeletric Field Measurements – Performance, Problems, Perspectives 6) Conclusions and Outlook ● ● Lutzhorn 2 (Schleswig-Holstein) Barnewitz (Brandenburg) Fuhrberg (Niedersachsen) (Abb. aus Strahser et al., 2007) Seismoelektrische Messungen und Auswertungen im Vergleich mit anderen geophysikalischen Verfahren 3. Datenbeispiel Lokation Lutzhorn 1 Einfluss verschiedener Dipollängen Seismoelektrische Messungen und Auswertungen im Vergleich mit anderen geophysikalischen Verfahren 3. Datenbeispiel Lokation Lutzhorn 1 Einfluss verschiedener Dipollängen Vorverstärkerkette (Abb. aus Stoll, 2005) Seismoelektrische Messungen und Auswertungen im Vergleich mit anderen geophysikalischen Verfahren 6) Probleme bei der Identifikation seismoelektrischer Signale Einsätze mit starkem Moveout in der Seismoelektrik finden keine Entsprechung in der Seismik ● Überdeckung des konvertierten Signals durch das mitgeführte Wellenfeld ● Verschiedene Polaritäten erschweren die Identifikation des Signals ● Ungeklärter Versatz der Spuren zu späteren Offsets ● 50-Hz-Störsignale ● c) Different polarities complicate the identification of the converted signal d) Ungeklärter Versatz der Spuren zu späteren Offsets Seismoeletric Field Measurements – Performance, Problems, Perspectives Outline 1) History of seismoelectrics in Kiel 2) Seismoeletric field measurements 3) Data example 1 - Location Lutzhorn 4) Data example 2 - Location Augustenhof (2.5 D) 5) Combined results and interpretation 6) Problems within the identification of seismoelectric signals 7) Conclusions and outlook