Download Impedance - Chabot College

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Engineering 43
Impedance
KCL & KVL
Bruce Mayer, PE
Registered Electrical & Mechanical Engineer
[email protected]
Engineering-43: Engineering Circuit Analysis
1
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
Review → V-I in Phasor Space
 Resistors
No Phase Shift
V
I
R
 Inductors
i(t) LAGS
V
I
  90
L
 Capacitors
i(t) LEADS
I  CV90
Engineering-43: Engineering Circuit Analysis
2
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
Impedance
 For each of the passive
components, the
relationship between
the voltage phasor and
the current phasor is
algebraic (previous sld)
 Consider now the
general case for an
arbitrary 2-terminal
element
 The Frequency Domain
Analog to Resistance is
IMPEDANCE, Z
Engineering-43: Engineering Circuit Analysis
3
V
Z
I
 Since the Phasors V & I
Have units of Volts and
Amps, Z has units of
Volts per Amp (V/A),
or OHMS
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
Impedance cont.
 Since V & I are
COMPLEX, Then Z is
also Complex
Z
V VM  v VM


( v   i ) | Z |  z
I
I M  i I M
 Impedance is NOT a
Phasor
• It’s Magnitude and Phase
Do Not Change
regardless of the
Location within The
Circuit
Engineering-43: Engineering Circuit Analysis
4
 However, Z IS a
COMPLEX NUMBER
that can be written in
polar or Cartesian form.
• In general, its value
DOES depend on the
Sinusoidal frequency
Z ( )  R  jX ( )
 R  RESISTive component

X ( )  REACTive component
• Note that the
REACTANCE, X, is
a function of ω
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
Impedance cont.2
 Thus
Z z  R  jX
 The Magnitude and
Phase
Z  R2  X 2
 z  arctan
X
R
 Where
R  Z cos  z
X  Z sin  z
Engineering-43: Engineering Circuit Analysis
5
 Summary Of PassiveElement Impedance
Element
Phasor Eq. Impedance
V  RI
V  j L I
1
V
I
C
j C
 Examine ZC
R
L
ZR
Z  jL
1
Z
j C
1
j 1
j
ZC 


jC j jC  1C
1
1
 ZC  j
 XC 
C
C
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
KVL & KCL Hold In Phasor Spc
 v2 (t ) 


v1 ( t )
v3 ( t )


KVL: v1(t )  v2 (t )  v3 (t )  0
vi (t )  VMie
j ( t  i )
, i  1,2,3
i0 (t )
Similarly for the Sinusoidal
Currents ...
V1  V2  V3  0 Phasors!

V1
V3


Engineering-43: Engineering Circuit Analysis
6
i3 (t )
ik (t )  I Mk e j ( t k ) , k  0,1,2,3
VM 11  VM 2 2  VM 33  0

i2 ( t )
KCL :  i0 (t )  i1 (t )  i2 (t )  i3 (t )  0
KVL : (VM 1e j1  VM 2 e j 2  VM 3e j3 )e jt  0
 V2 
i1 (t )
 I 0  I1  I 2  I 3  0
I0
I1
I2
I3
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
Series & Parallel Impedances
 Impedances (which have units of Ω)
Combine as do RESISTANCES
• The SERIES Case
I
 V1 
 V2 
Z1
Z2
I
Zs  Z1  Z2
Z s  k Z k
• The Parallel Case
I

Z1
I

Z2 V
V


Engineering-43: Engineering Circuit Analysis
7
Zp 
Z1Z 2
Z1  Z 2
1
1
 k
Zp
Zk
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
Admittance
 The Frequency Domain
Analog of
CONDUCTANCE is
ADMITTANCE
• Admittance is Thus
Inverse Impedance
1
Y   G  jB (Siemens)
Z
• G  CONDUCTance
• B  SUSCEPTance
 Find G & B In terms of
Resistance, R, and
Reactance, X
Engineering-43: Engineering Circuit Analysis
8
1
1
Y 
Z R  jX
 Multiply Denominator by
the Complex Conjugate
1
R  jX
R  jX
Y
 2
R  jX R  jX R  X 2
R
 G 2
R X2
X
 B 2
R X2
 Note that G & R
and X & B are
NOT Reciprocals
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
Series & Parallel Admittance
 Admittance Element Phasor Eq. Impedance
Summarized
R
L
C
V  RI
V  j L I
1
V
I
j C
ZR
Z  j L
Z
Admittance
1
Y  G
R
1
Y
j L
1
j C
Y  j C
 Admittances (which have units of Siemens)
Combine as do CONDUCTANCES
 The SERIES Case
1
1

Ys
k Yk
Engineering-43: Engineering Circuit Analysis
9
 The PARALLEL Case
Yp   Yk
k
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
Sp17 Game Plan
 Start on Next slide of this Lecture
• ENGR-43_Lec05b_Sp17_Impedance_KCL_KVL_160320.
pptx
 Complete as much as possible on
Lectures
• ENGR-43_Lec05c_Sp17_Thevenin_AC_Power.pptx
• ENGR-43_Lec06a_Sp17_Fourier_XferFcn.pptx
Engineering-43: Engineering Circuit Analysis
10
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
MATLAB 𝒙, 𝒚 ↔ 𝒓, 𝜽 Functions
 Rectangular to Polar  Polar to Rectangular
 Both use RADIANS only
Engineering-43: Engineering Circuit Analysis
11
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
Phasor Diagrams
 As Noted Earlier
Phasors can be
Considered as
VECTORS in the
Complex Plane
• See Diagram at Right
 Phasors Obey the
Rules of Vector
Arithmetic
• Which were originally
Developed for Force
Mechanics
Engineering-43: Engineering Circuit Analysis
12
Imaginary
b
A

a
Real
 See Next Slide for
Review of Vector
Addition
• Text Diagrams follow the
PARALLELOGRAM
Method
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
Vector Addition
 Parallelogram Rule
For Vector Addition
 Examine Top & Bottom of
The Parallelogram
• Triangle Rule For
Vector Addition
• Vector Addition is
Commutative
PQ  QP
C
B
C
B
• Vector Subtraction →
Reverse Direction of
The Subtrahend
P  Q  P   Q
Engineering-43: Engineering Circuit Analysis
13
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
Example  Phasor Diagram
 For The Single-Node
Ckt at Right, Draw the
Phasor Diagrams as a
function of Frequency
 First Write KCL
V
V
IS  
 jCV
R jL
1

1
I S  V 
 jC 
 R jL

I S  V k Yk  Admittance s
 Now we can Select ANY
Phasor Quantity, I or V,
as the BaseLine
Engineering-43: Engineering Circuit Analysis
14
 That is, we Can Select
ONE Phasor to have a
ZERO Phase Angle
• In this Case Choose V
 Next Examine
Frequency Sensitivity of
the Admittances
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
Example  Phasor Diagram cont
 The KCL
V
V
IS  
 jCV
R jL
 This Eqn Shows That as
ω increases
• YL Decreases (goes to 0)
• YC Increases (goes to +∞)
 Now ReWrite KCL using
Phasor Notation
 Examining the Phase
Angles Shows that in
the Complex Plane
• IR Points RIGHT
• IL Points DOWN
• IC Points UP
VM 0 VM   90
IS 

 CVM 90
R
L
 As ω Increases, IC
as 1 j  1  90; j  190
begins to dominate IL
Engineering-43: Engineering Circuit Analysis
15
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
Example  Phasor Diagram cont.2
| I L || I C |
 Case-I: ω=Med so That
•
YL  YC
I C  jCV
IC  I L  0
V
IL 
jL
 IR  IS
 Case-II: ω=Low so That
• YL  2YC
 The Circuit is Basically
INDUCTIVE
Engineering-43: Engineering Circuit Analysis
16
 Case-III: ω=Hi so That
• YC  2YL
 The Circuit is Basically
CAPACITIVE
| I L || I C |
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
KCL & KVL for AC Analysis
 Simple-Circuit Analysis
• AC Version of Ohm’s Law → V = IZ
• Rules for Combining Z and/or Y
• KCL & KVL
• Current and/or Voltage Dividers
 More Complex Circuits
• Nodal Analysis
• Loop or Mesh Analysis
• SuperPosition or Source Xform
Engineering-43: Engineering Circuit Analysis
17
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
Methods of AC Analysis cont.
 More Complex Circuits
• Thevenin’s Theorem
• Norton’s Theorem
• Numerical Techniques
– MATLAB
– SPICE
Engineering-43: Engineering Circuit Analysis
18
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
𝐕1
Example
 For The Ckt At Right,
Find VS if
Vo  8V45
 Solution Plan: GND at
Bot, then Find in Order
• I3 → V1 → I2 → I1 → VS
 I3 First by Ohm
I3 
VO V 
 445A 
2
 Then V1 by Ohm = ZI
V1  (2  j 2)I 3 
 8  45 445
 Then I2 by Ohm
I2 
V1
11.314V0

 5.657 A  90
j 2
290
 Then I1 by KCL
I1  I 2  I 3  5.657  90  445
I1   j 5.657 A  (2.828  j 2.828)A
I1  2.828A  j 2.828 A
V1  11.3140(V)
Engineering-43: Engineering Circuit Analysis
19
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
Example cont.
Z eq
 Then VS by Ohm & KVL
𝐕1
VS  2I1  V1  2(2.828  j 2.828)V  11.314V0
VS  16.97  j 5.658V
VS  17.888V  18.439
 Note That in passing we
have I1 and VS
 Thus can find the
Circuit’s Equivalent
(BlackBox) Impedance
VS
Z eq 
I1
Engineering-43: Engineering Circuit Analysis
20
 Then Zeq
VS
Z eq 
I1
17.888V  18.439
Z eq 
2.828  j 2.828A
Z eq  4.00  j 2.00
Z eq  4.47226.56
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
Nodal Analysis for AC Circuits
 For The Ckt at Right
Find IO
 Use Node Analysis
• Specifically a SuperNode
that Encompasses The
V-Src  KCL at SN
V1
V2
V2
 2A0 

 0  The Relation For IO
1  j1
1 1  j1
V2
IO 
1
 And the SuperNode
 In SuperNode KCL
Constraint
Sub for V1
V2  V1  6V0
or V1  V2  6V0
Engineering-43: Engineering Circuit Analysis
21
V2  6V0
V
 2V0  V2  2  0
1  j1
1  j1
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
Nodal Analysis cont.
 Solving for For V2
 1
1 
6
V2 
1

2


1

j
1
1

j
1
1  j1


 The Complex Arithmetic
V2
(1  j1)  (1  j1)(1  j1)  (1  j1) 2(1  j1)  6

1  j1
(1  j1)(1  j1)
4
V2
 8  j2
1 j
V2 
 Or
8  j 2 1  j   5  j 3
1
4
2
Engineering-43: Engineering Circuit Analysis
22
 Recall
2
V2 V 
IO 
1
3
5
I O    j ( A )
2
2
I O  2.92A  30.96
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
Loop Analysis for AC Circuits
 Same Ckt, But Different
Approach to Find IO
 Note: IO = –I3
 Constraint: I1 = –2A0°
 The Loop Eqns
LOOP 2 :
(1  j )(I1  I 2 )  60  (1  j )(I 2  I 3 )  0
LOOP 3 : (1  j )  (I 2  I 3 )  1  I 3  0
 Solution is I3 = –IO
 Recall I1 = –2A0°
Engineering-43: Engineering Circuit Analysis
23
 Simplify Loop2 & Loop3
L2 : 2I 2  (1  j )I 3  6  (1  j )I1
2I 2  (1  j )I 3  6  (1  j )(2A)
L3 : (1  j )I 2  (2  j )I 3  0
 Two Eqns In Two
Unknowns: 𝐈2 & 𝐈3
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
Loop Analysis cont
 Isolating I3
(1  j )
2

 2(2  j ) I 3  (1  j )(8  2 j )
I2
 Then The Solution
I3 
10  6 j
4
 I0 
5 3
 j (A)
2 2
 Could also use a
SuperMesh to Avoid
the Current Source
CONSTRAINT : I 2  I1  20
SUPERMESH : (1  j )I1  60  1(I 2  I 3 )  0
MESH 3 : 1(I 3  I 2 )  (1  j )I 3  0
Engineering-43: Engineering Circuit Analysis
24
 The Next Step is to
Solve the 3 Eqns for
I2 and I3
 So Then Note
IO  I 2  I3
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
Recall Source SuperPosition
I
=
I L2
1
L
V
1
L
 Circuit With Current
Source Set To Zero
• OPEN Ckt
 By Linearity
I L  I1L  I 2L
Engineering-43: Engineering Circuit Analysis
25
+
VL2
 Circuit with Voltage
Source set to Zero
• SHORT Ckt
VL  VL1  VL2
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
AC Ckt Source SuperPosition
 Same Ckt, But Use
Source SuperPosition
to Find IO
 DeActivate V-Source
 The Reduced Ckt
 Combine The Parallel
(1  j )(1  j )
Impedances
Z '  (1  j ) || (1  j ) 
1
(1  j )  (1  j )
Engineering-43: Engineering Circuit Analysis
26
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
AC Source SuperPosition cont.
 Find I-Src Contribution
to IO by I-Divider
Z '  1
I '0  20
 The V-Src Contribution
by V-Divider
1
 10( A)
11
 Now Deactivate the
I-Source (open it)
1 1  j 
Z "  1 || (1  j ) 
1  1  j 
Engineering-43: Engineering Circuit Analysis
27
Z "  1 || (1  j )
"
Z
V1"  "
60(V )
Z 1 j
Z"
I  V 1  "
60( A)
Z 1 j
"
O
"
1
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
AC Source SuperPosition cont.2
 Sub for Z”
1 j
2 j
"
I0 
6 ( A)
1 j
1 j
2 j
1 j
I 
6
(1  j )  3  j
"
0
6 6
I   j ( A)
4 4
"
0
 Finally SuperPose the
Response Components
Engineering-43: Engineering Circuit Analysis
28
 The Total Response
3 3
I 0  I  I  1   
2 2
'
0
"
0
5 3
 I 0   j ( A)
2 2
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt

j

Multiple Frequencies
 When Sources of Differing FREQUENCIES
excite a ckt then we MUST use SuperPosition
for every set of sources with NON-EQUAL
FREQUENCIES
 An Example
V2
V1
 We Can Denote the Sources as Phasors
V1  100V0
& V2  50V  10
 But canNOT COMBINE the Source due to
DIFFERING frequencies
Engineering-43: Engineering Circuit Analysis
29
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
Multiple Frequencies cont.1
 Must Use
SuperPosition for
EACH Different ω
V1
 V1 first (ω = 10 r/s)
Z L ,10  j 10 1
 V2 next (ω = 20 r/s)
Z L , 20  j 20 1
 The Frequency-1
Domain
Phasor-Diagram
Engineering-43: Engineering Circuit Analysis
30
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
Multiple Frequencies cont.2
 The Frequency-2
Domain
Phasor-Diagram
V2
 Recover the Time
Domain Currents

 Finally SuperPose


i t   i ' t   i" t   7.07 A cos 10t  45  2.24A cos 20t  73.43
– Note the MINUS sign from CW-current assumed-Positive
Engineering-43: Engineering Circuit Analysis
31
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt

Source Transformation
 Source transformation is a good tool to reduce
complexity in a circuit
• WHEN IT CAN BE APPLIED
 “ideal sources” are not good models for
real behavior of sources
• A real battery does not produce infinite current
when short-circuited
 Resistance → Impedance Analogy
ZV
+
-
RV
VS
a
ZI
a
RI
b
IS
b
THE MODELS ARE EQUIVALENT S WHEN
RV  RI  R
ZV  Z I  Z
VS  RI S
VS  ZI S
Improved model
Improved model
for voltage source for current source
Engineering-43: Engineering Circuit Analysis
32
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
Source Transformation
 Same Ckt, But Use
Source Transformation
to Find IO
 Start With I-Src
 Then the Reduced Circuit
V ' 8  2 j
 Next Combine the Voltage
Sources And Xform
Engineering-43: Engineering Circuit Analysis
33
VS'
8 2 j
IS 

Z Series 1  j
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
Source Transformation cont
 The Reduced Ckt
 Now Combine the
Series-Parallel
Impedances
1 j 2
Z p  (1  j ) || (1  j ) 
 1
11 j  j
 The Reduced Ckt
 IO by I-Divider
IO  I S 
8 2 j
1 j
Zp
1 4  j 4  j 1  j 


2 1  j 1  j 1  j 
 IO 

5  j3
2
Engineering-43: Engineering Circuit Analysis
34
IS 
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
5  j3
2
WhiteBoard Work
 Let’s Work This Nice
Problem to Find VO
Engineering-43: Engineering Circuit Analysis
35
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
All Done for Today
Charles
Proteus
Steinmetz
Delveloper of Phasor Analysis
Engineering-43: Engineering Circuit Analysis
36
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
Engineering 43
Appendix
HP48G+
Complex No.s
Bruce Mayer, PE
Licensed Electrical & Mechanical Engineer
[email protected]
Engineering-43: Engineering Circuit Analysis
37
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
HP 48G+ : Using Memory
Purple
LEFT Arrow
Engineering-43: Engineering Circuit Analysis
38
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
From: HP 48g Quick Start Guide
Engineering-43: Engineering Circuit Analysis
39
From: HP-48_Complex_Numbers_1605.pptx
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
Engineering-43: Engineering Circuit Analysis
From:40 HP-48_Complex_Numbers_1605.pptx
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
Bruce Mayer, PE
Engineering-43: Engineering Circuit Analysis
41
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
From: HP-48_Complex_Numbers_1605.pptx
Engineering 43
Appendix
White Board
Problems
Bruce Mayer, PE
Licensed Electrical & Mechanical Engineer
[email protected]
Engineering-43: Engineering Circuit Analysis
42
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
Engineering-43: Engineering Circuit Analysis
43
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
Engineering-43: Engineering Circuit Analysis
44
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
WhiteBoard Work
 Let’s Work this Nice
Problem
i1 (t)
i2 (t)
3.33 F
20
is(t)
6mH
10
iS t   100mA cos5000t  8.13
 I  100mA8.13
 See Next Slide for
Phasor Diagrams
Engineering-43: Engineering Circuit Analysis
45
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
P8.29 Phasor Diagrams
 Tip-To-Tail Phasor
(Vector) Addition
I 2  84.98mA109.44
I S  99.8mA8.11
I S  100mA8.13
I 2  84.98mA109.44
I1  143.3mA  27.41
I1  143.3mA  27.41
Engineering-43: Engineering Circuit Analysis
46
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
WhiteBoard Work
 Let’s Work Some
Phasor Problems
2
z
4
10mH
Engineering-43: Engineering Circuit Analysis
47
500F
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
Engineering-43: Engineering Circuit Analysis
48
Bruce Mayer, PE
[email protected] • ENGR-44_Lec-08-2_Impedance.ppt
Related documents