Download INTRINSIC SPIN

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Spin Hall effect
J. Wunderlich(1), B. Kaestner(1,2), J. Sinova (3), T. Jungwirth (4,5)
(1)
(2)
(3)
(4)
(5)
Hitachi Cambridge Laboratory, UK
National Physical Laboratory, UK
Texas A&M University, USA
Institute of Physics ASCR, Czech Republic
University of Nottingham, UK
Collaborators: Allan MacDonald, Dimitri Culcer, Ewelina
Hankeiwc, Qian Niu, Kentaro Nomura, Nikolai Sinitsyn,
Laurens Molenkamp, Winfried Teizer
OUTLINE:
- Theory remarks
- Comments on experiments
Kerr microscope
Co-planar spin LED
10 µm
p n
SHE in a 2D
hole gas
[Wunderlich et. al., Phys. Rev. Lett. 94, 047204]
SHE in a bulk
semiconductor
[Kato et. al., Science 306, 1910]
SHE - Theory (http://unix12.fzu.cz/msnew)
Schmeltzer:2005_a
D. Schmeltzer, "The Non-Dissipative Spin-Hall Conductivity and the Identification of the Conserved Current", (2005), preprint cond-mat/0504035: on-line
Wu:2005_a
M. W. Wu and J. Zhou, "Spin-Hall effect in two-dimensional mesoscopic hole systems", (2005), preprint cond-mat/0503616: on-line
Erlingsson:2005_a
Sigurdur I. Erlingsson and Daniel Loss, "Determining the spin Hall conductance via charge transport", (2005), preprint cond-mat/0503605: on-line
Zhang:2005_b
Ping Zhang and Junren Shi and Di Xiao and Qian Niu, "Conserved Effective Spin Current in Spin-Orbit Coupled Systems", (2005), preprint cond-mat/0503505: on-line
Sugimoto:2005_a
Naoyuki Sugimoto, Shigeki Onoda, Shuichi Murakami, Naoto Nagaosa, "Intrinsic vs. extrinsic spin Hall effect in the disordered Rashba Mode", (2005), preprint cond-mat/0503475: on-line
Bleibaum:2005_a
O. Bleibaum, "Spin-Hall effect in a dirty Rashba semiconductor", (2005), preprint cond-mat/0503471: on-line
Nikolic:2005_a
Branislav K. Nikolic, Liviu P. Zarbo, and Sven Welack, "Where is transverse "force" in the intrinsic spin Hall effect?", (2005), preprint cond-mat/0503415: on-line
Liu:2005_b
S. Y. Liu and X. L. Lei, "Disorder effects on dissipationless spin-Hall current in a diffusive Rashba two-dimensional heavy-hole system", (2005), preprint cond-mat/0503352: on-line
Hu:2005_b
Jiangping H, "Topological orbital angular momentum Hall current", (2005), preprint cond-mat/0503149: on-line
Chen:2005_a
W.Q. Chen, Z.Y. Weng, and D.N. Sheng, "Numerical Study of the Spin Hall Conductance in the Luttinger Model", (2005), preprint cond-mat/0502570: on-line
Entin-Wohlman:2005_a
O. Entin-Wohlman, A. Aharony, Y. M. Galperin, V. I. Kozub, and V. Vinokur, "Orbital ac spin-Hall effect in the hopping regime", (2005), preprint cond-mat/0502478: on-line
Liu:2005_a
S. Y. Liu and X. L. Lei, "Vanishing of the Dissipationless Spin Hall Effect in a Diffusive Two-Dimensional Electron Gas with Spin-Orbit Coupling", (2005), preprint cond-mat/0502392: on-line
Yao:2005_a
Y. Yao, and Z. Fang, "Intrinsic Spin Hall Effect in Semiconductors and Simple Metals: First-Principles Calculations", (2005), preprint cond-mat/0502351: on-line
Bernevig:2005_a
B. Andrei Bernevig, Taylor L. Hughes, Shou-Cheng Zhang, "Orbitronics: the Intrinsic Orbital Hall Effect in p-Doped Silicon", (2005), preprint cond-mat/0502345: on-line
Li:2005_a
Jian Li, Liangbin Hu, and Shun-Qing Shen, "Spin resolved Hall effect driven by spin-orbit couplin", (2005), preprint cond-mat/0502102: on-line
Hu:2005_a
Jiangping Hu, "Spin Polarization and Dichroism Effects by Electric Field", (2005), preprint cond-mat/0502005: on-line
Lou:2005_a
Ping Lou and Tao Xiang, "Spin Hall current and two-dimensional magnetic monopole in a Corbino disk", (2005), preprint cond-mat/0501307: on-line
Nikolic:2004_b
Nikolic et al., "Non-Equilibrium Spin Accumulation due to the Spin Hall Effect in Mesoscopic Two-Probe Ballistic Spin-Orbit ", (2004), preprint cond-mat/0412595: on-line
Bernevig:2004_e
B. Andrei Bernevig and Shou-Cheng Zhang, "Intrinsic Spin-Hall Effect in n-Doped Bulk GaAs", (2004), preprint cond-mat/0412550: on-line
Kou:2004_a
Su-Peng Kou, Xiao-Liang Qi, and Zheng-Yu Weng, "Conserved Dissipationless Spin Currents in a Doped Mott Insulator", (2004), preprint cond-mat/0412146: on-line
Mele:2004_a
C.L. Kane and E.J. Mele, "Quantum Spin Hall Effect in Graphene", (2004), preprint cond-mat/0411737: on-line
Bernevig:2004_d
B. Andrei Bernevig, Xiaowei Yu, Shou-Cheng Zhang, "Maxwell Equation for the Coupled Spin-Charge Wave Propagation", (2004), preprint cond-mat/0411276: on-line
Sun:2004_a
Qing-feng Sun, Jian Wang, Hong Guo, "Quantum transport theory for nanostructures with Rashba spin-orbital interaction", (2004), preprint cond-mat/0411469: on-line
Shekhter:2004_a
A. Shekhter, et al., "Chiral spin resonance and spin-Hall conductivity in the presence of the electron-electron interactions", (2004), preprint cond-mat/0411239: on-line
Serebrennikov:2004_a
Yuri A. Serebrennikov, "Gometric spin dephasing of carriers with strong spin-orbit coupling", (2004), preprint cond-mat/0411683: on-line
Chang:2004_a
Ming-Che Chang, "The effect of in-plane magnetic field on the spin Hall effect in Rashba-Dresselhaus system", (2004), preprint cond-mat/cond-mat/0411697: on-line
Liu:2004_d
S. Y. Liu, X. L. Lei, "Spin Hall Effect in a Diffusive Rashba Two-dimensional Electron Gas", (2004), preprint cond-mat/0411629: on-line
Bernevig:2004_c
B. Andrei Bernevig and Shou-Cheng Zhang, "Intrinsic Spin Hall Effect in the Two Dimensional Hole Gas", (2004), preprint cond-mat/0411457: on-line
Mal'shukov:2004_a
A.G. Mal'shukov and K.A. Chao, "Spin-Hall conductivity of a disordered 2D electron gas with Dresselhaus spin-orbit interaction", (2004), preprint cond-mat/0410607: on-line
Souma:2004_a
Satofumi Souma and Branislav K. Nikolic, "Spin Hall Current Driven by Quantum Interferences in Mesoscopic Rashba Rings", (2004), preprint cond-mat/0410716: on-line
Shen:2004_b
Shun-Qing Shen, et al., "Resonant spin Hall conductance in quantum Hall systems lacking bulk and structural inversion symmetry", (2004), preprint cond-mat/0410169: on-line
Sheng:2004_a
L. Sheng, D. N. Sheng, and C. S. Ting, "Spin-Hall Effect in Two-Dimensional Electron Systems with Rashba Spin-Orbit Coupling and Disorder", (2004), preprint cond-mat/0409038: on-line
Nikolic:2004_a
Branislav K. Nikolic, Liviu P. Zarbo, and Satofumi Souma, "Mesoscopic Spin Hall Effect in Multiprobe Semiconductor Bridges", (2004), preprint cond-mat/0408693: on-line
Bernevig:2004_b
B. Andrei Bernevig and Shou-Cheng Zhang, "Spin Splitting and Spin Current in Strained Bulk Semiconductors", (2004), preprint cond-mat/0408442: on-line
Khaetskii:2004_a
Alexander Khaetskii, "Nonexistence of intrinsic spin currents", (2004), preprint cond-mat/0408136: on-line
Rashba:2004_c
Emmanuel I. Rashba, "Spin Dynamics and Spin Transport", (2004), preprint cond-mat/0408119: on-line
Wang:2004_b
Xindong Wang and X.-G. Zhang, "Spin symmetry and spin current of helicity eigenstates of the Luttinger Hamiltonian", (2004), preprint cond-mat/0407699: on-line
Dimitrova:2004_b
Ol'ga V. Dimitrova, "Spin-Hall Conductivity and Pauli Susceptibility in the Presence of Electron-Electron Interactions", (2004), preprint cond-mat/0407612: on-line
Chalaev:2004_a
Oleg Chalaev, Daniel Loss, "Spin-Hall conductivity due to Rashba spin-orbit interaction in disordered systems", (2004), preprint cond-mat/0407342: on-line
Schmeltzer:2004_a
D. Schmeltzer, "Topological spin current", (2004), preprint cond-mat/0406565: on-line
Zhang:2004_a
Ping Zhang and Qian Niu, "Charge-Hall effect driven by spin force: reciprocal of the spin-Hall effect", (2004), preprint cond-mat/0406436: on-line
Dimitrova:2004_a
Ol'ga V. Dimitrova, "Universal value of Spin-Hall Conductivity of 2D Rashba metal with impurities", (2004), preprint cond-mat/0405339: on-line
Murakami:2004_a
Shuichi Murakami, "Spin Hall Effect in p-type Semiconductors", (2004), preprint cond-mat/0405003: on-line
Xiong:2004_a
Ye Xiong and X.C. Xie, "Spin Hall Conductance in Disordered Two-Dimensional Electron Systems", (2004), preprint cond-mat/0403083: on-line
Dyakonov:2004_a
M. I. Dyakonov, "Spintronics?", (2004), preprint cond-mat/0401369: on-line
-------- 2005 -------Raimondi:2004_a
Roberto Raimondi and Peter Schwab, "Spin-Hall effect in a disordered 2D electron-system", Phys. Rev. B 71, 033311 (2005): on-line, preprint cond-mat/0408233: on-line
Zhang:2004_b
S. Zhang and Z. Yang, "Intrinsic Spin and Orbital-Angular-Momentum Hall Effect", Phys. Rev. Lett. 94, 066602 (2005): on-line, preprint cond-mat/0407704: on-line
Nomura:2004_a
K. Nomura, et al., "Non-vanishing spin Hall currents in disordered spin-orbit coupling systems", Phys. Rev. B 71, 041304 (2005): on-line, preprint cond-mat/0407279: on-line
Schliemann:2004_a
John Schliemann, Daniel Loss, "Spin-Hall transport of heavy holes in III-V semiconductor quantum wells", Phys. Rev. B 71, 085308 (2005): on-line, preprint cond-mat/0405436: on-line
-------- 2004 -------Rashba:2004_d
Emmanuel I. Rashba, "Sum rules for spin-Hall conductivity cancelation", Physica B 70, 201309(R) (2004): on-line, preprint cond-mat/0409476: on-line
Hankiewicz:2004_b
E. M. Hankiewicz, et al., "Manifestation of the spin-Hall effect through transport measurements in the mesoscopic regime", Phys. Rev. B 70, 241301(R) (2004): on-line,
Ma:2004_a
Xiaohua Ma, et al., "Influences of spin accumulation on the intrinsic spin Hall effect in two dimensional electron gases with Rashba spin-orbit coupling", Phys. Rev. B 70, 195343 (2004): on-line,
Mishchenko:2004_a
E.G. Mishchenko, et al., "Spin current and polarization in impure 2D electron systems with spin-orbit coupling", Phys. Rev. Lett. 93, 226602 (2004): on-line, preprint cond-mat/0406730: on-line
Bernevig:2004_a
B. A. Bernevig, "On the nature of spin currents", Phys. Rev. B 71, 073201 (2004): on-line, preprint cond-mat/0406153: on-line
Murakami:2004_b
Shuichi Murakami, Naoto Nagaosa, Shou-Cheng Zhang, "Spin Hall Insulator", Phys. Rev. Lett. 93, 156804 (2004): on-line, preprint cond-mat/0406001: on-line
Lee:2004_a
Wei-Li Lee, et al., "Dissipationless Anomalous Hall Current in the Ferromagnetic Spinel CuCr2Se4-xBrx", Science 303, 1647 (2004): on-line, preprint cond-mat/0405584: on-line
Zutic:2004_a
Igor Zutic, Jaroslav Fabian and S. Das Sarma, "Spintronics: Fundamentals and applications", Rev. Mod. Phys. 76, 323 (2004): on-line, preprint cond-mat/0405528: on-line
Murakam:2004_a
Shuichi Murakami, "Absence of vertex correction for the spin Hall effect in p-type semiconductors", Phys. Rev. B 69, 241202 (2004): on-line, preprint cond-mat/0405001: on-line
Rashba:2004_b
Emmanuel I. Rashba, "Spin currents, spin populations, and dielectric function", Phys. Rev. B 70, 161201 (2004): on-line, preprint cond-mat/0404723: on-line
Shen:2004_a
Shun-Qing Shen, et al., "Resonant Spin Hall Conductance in Two-Dimensional Electron Systems with Rashba Interaction in a Magnetic Field", Phys. Rev. Lett 92, 256603 (2004): on-line,
Inoue:2004_a
Jun-ichiro Inoue, et al., "Suppression of the Persistent Spin Hall Current by Defect Scattering", Phys. Rev. B 70, 041303 (2004): on-line, preprint cond-mat/0402442: on-line
Hu:2004_a
Liangbin Hu, et al., "Effects of spin imbalance on the electric-field-driven quantum dissipationless spin current in p-doped semiconductors", Phys. Rev. B 70, 235323 (2004): on-line,
Bernevig:2003_a
Bogdan et al., "Dissipationless spin current in anisotropic p-doped semiconductors", Phys. Rev. B 70, 113301 (2004): on-line, preprint cond-mat/0311024: on-line
Shen:2003_a
Shun-Qing Shen, "Spin Hall effect and Berry phase in two dimensional electron gas", Phys. Rev. B 70, 081311 (2004): on-line, preprint cond-mat/0310368: on-line
Sinitsyn:2003_a
N. A. Sinitsyn, et al., "Spin-Hall and spin-diagonal conductivity in the presence of Rashba and Dresselhaus spin-orbit coupling", Phys. Rev. B 70, 081312(R) (2004): on-line,
Schliemann:2004_b
John Schliemann and Daniel Loss, "Dissipation effects in spin-Hall transport of electrons and holes", Phys. Rev. B 69, 165315 (2004): on-line, preprint cond-mat/0310108: on-line
Culcer:2004_a
Dimitrie Culcer, et al., "Semiclassical theory of spin transport in spin-orbit coupled systems", Phys. Rev. Lett. 93, 046602 (2004): on-line, preprint cond-mat/0309475: on-line
-------- 2003 -------Rashba:2003_a
Emmanuel I. Rashba, "Spin currents in thermodynamic equilibrium: The challenge of discerning transport currents", Phys. Rev. B 68, 241315 (2003): on-line
Culcer:2003_a
Dimitrie Culcer, Allan MacDonald, Qian Niu, "Anomalous Hall effect in paramagnetic two dimensional systems", Phys. Rev. B 68, 045327 (2003): on-line, preprint cond-mat/0311147: on-line
Hu:2003_a
Jiangping Hu, Bogdan A. Bernevig and Congjun Wu, "Spin current in spin-orbit coupling systems", Int. J. Mod. Phys. B 17, 5991 (2003), preprint cond-mat/0310093: on-line
Murakami:2003_b
Shuichi Murakami, et al., "SU(2) Non-Abelian holonomy and dissipationless spin current in semiconductors", Phys. Rev. B B 69, 235206 (2003): on-line, preprint cond-mat/0310005: on-line
Sinova:2004_a
Jairo Sinova, et al., "Universal Intrinsic Spin-Hall Effect", Phys. Rev. Lett. 92, 126603 (2004): on-line, preprint cond-mat/0307663: on-line
Murakami:2003_a
Shuichi Murakami, Naoto Nagaosa, Shou-Cheng Zhang, "Dissipationless Quantum Spin Current at Room Temperature", Science 301, 1348 (2003): on-line, preprint cond-mat/0308167: on-line
--------
SHE - Experiment (http://unix12.fzu.cz/msnew)
Kato:2005_a
Y. K. Kato, et al., "Electrical initialization and manipulation of electron spins in an L-shaped strained n-InGaAs channel", (2005), preprint cond-mat/0502627: on-line
Wunderlich:2004_a
J. Wunderlich, et al. "Experimental observation of the spin-Hall effect in a two dimensional spin-orbit coupled semiconductor system", Phys. Rev. Lett. 94, 047204 (2005):
preprint cond-mat/0410295: on-line
Kato:2004_d
Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, "Observation of the Spin Hall Effect in Semiconductors", Science 306, 1910 (2004): on-line
Ordinary and quantum Hall effects
B Lorentz force deflect like-charge particles
_ _ _ _ _ _ _ _ _ _
_
Ordinary:
+++++++++++++
Sign and density of
carriers; holes in SC
V
Quantum
FL
I
Resistance standard;
fractional-charge carriers
Anomalous Hall effect
Spin-orbit coupling “force” deflects like-spin particles
majority
__ FSO
_
FSO
I
 H  R0 B  4πRs M
minority
V
InMnAs
Simple electrical measurement
of magnetization
Spin Hall effect
Spin-orbit coupling “force” deflects like-spin particles
_
FSO
__
FSO
non-magnetic
I
V=0
Spin-current generation in non-magnetic systems
without applying external magnetic fields
Spin accumulation without charge accumulation
excludes simple electrical detection
Spin-orbit coupling (relativistic effect)
Produces
an electric field
Ingredients: - potential V(r)
E


- motion of an electron
In the rest frame of an electron
the electric field generates and
effective magnetic field
- gives an effective interaction with the electron’s
magnetic moment
k
E
H SO
Beff

1
E   V (r )
e
 
  μ  Beff


 k  
 E
Beff  

 cm 
Skew scattering off impurity potential (Extrinsic SHE/AHE)
H SO

 2s   
  2 2   k  Vimp(r)
m c 



skew
scattering
If only this SO effect then much too weak to give a sizable SHE/AHE
SO-coupling from host atoms (Intrinsic SHE/AHE)
H SO

E






 
 es   k  1 dV (r ) 
    Beff  
 r
   s  l
 mc   mc  er dr 
l=0 for electrons  weak SO
l=1 for holes  strong SO

E
Enhanced in asymmetric QW

v
Intrinsic AHE approach explains many experiments
• (Ga,Mn)As systems [Jungwirth et al. PRL 02, APL 03]
• Fe [Yao, Kleinman, Macdonald, Sinova,
Jungwirth et al PRL 04]
Experiment
sAH  1000 (W cm)-1
Theroy
sAH  750 (W cm)-1
• Layered 2D ferromagnets such as SrRuO3 and
pyrochlore ferromagnets [Onoda and Nagaosa, J. Phys. Soc.
Jap. 01,Taguchi et al., Science 01, Fang et al Science 03, Shindou and
Nagaosa, PRL 01]
• Manganites, [Ye et al. PRL 99]
• Ferromagnetic spinel CuCrSeBr [Lee et al. Science 04]
INTRINSIC SPIN-HALL EFFECT:
[Murakami, Nagaosa, Zhang, Science 2003 (cond-mat/0308167)
Sinova, Culcer, Niu, Sinitsyn, Jungwirth, MacDonald, PRL 2004 (cont-mat/0307663)]
Let’s start with a simple model: Rashba SO coupling in a 2DEGs
Inversion symmetry
 no R-SO
Broken inversion symmetry
 R-SO
  
2k 2
2k 2
Hk 
 ( k xsy  k ys x ) 
 s  ( z  k )
2m
2m
[Bychkov and Rashba 84]
Heuristic argument: z-component of spin due to precession in effective "Zeeman" field
 dk

Classical dynamics in k-dependent (Rashba) field:    ( z  k ), x  eE
x
dt

LLG equations for small drift  adiabatic solution:
 dy
x nz  

dt
x dt
dn y

nz  

x
2
eEx
y ( t )
ny ( t ) 
x
Spin Hall conductivity
js ,y ~  d p( nz , p p y )
2
s sH   js , y / Ex  e / 8
Classical and Kubo formula give the same spin-Hall conductivity
s xysH
Color plot of spin-Hall conductivity:
yellow=e/8π and red=0
 e
m 2 2
*
for n2 D  n2 D 

4
8




e n2 D
*

for
n

n
2D
2D
 8 n*2 D
Disorder effects: finite lifetime (Born approximation) for
Rashba 2DEG
ε F /(/τ)
 F  (  /  )
SO  k F   / 
 intrinsic SHE
Disorder effects: beyond the Born
approximation for Rashba 2DEG
Question: Are there any other major effects beyond the finite
life time broadening? Can vertex corrections be ignored?
Inoue, Bauer, Molenkamp PRB 04
Ladder sum vertex correction:
Mal'shukov et al, PRL 04
Raimondi et al, PRB 04
Khaetskii, cond-mat/0408136
Loss et al, cond-mat/0407342 v2
~
  0
s xysH  0
Spin Hall effect ?
Extrinsic  too weak to give
any sizable effect
Intrinsic  cancelled by vertex
corrections for infinitely weak
disorder
Ways to solve (go around) the controversy:
- Skew scattering in SO-coupled bands [in the spirit of Dyakonov and Perel PLA '71
and Hirsch PRL '99]  no detailed theory done yet
- Intrinsic SHE in Rashba-SO systems beyond
perturbation theory by solving Kubo formula exactly
 inconclusive (finite-size effects)
[Nomura et al. PRB '05]
- Other than Rashba-SO systems (intrinsic AHE explains experiments here)
[Bernevig, Zhang, cond-mat/0411457,
 vertex corrections vanish in all
other studied SO-systems (bulk, 2DHG,..) cond-mat/0412550
- Look at transport in mesoscopic systems instead
of conductivity in the thermodynamic limit
[Hankiewicz et al., PRB 04]
[Nikolic et al., cond-mat/0412595]
SHE in 2DHG more robust than in Rashba 2DEG
- Measure the effect
Kato, Myars, Gossard, Awschalom, [Science 306, 1910]
"Observation of the spin Hall effect
in semiconductors"
Local Kerr effect in n-type GaAs and InGaAs:
~0.03% polarization
Bulk semiconductor  stronger disorder
n-type material  weaker SO-coupling
SO   / 
Not in the intrinsic SHE regime
Wunderlich, Kästner, Sinova, Jungwirth, [Phys. Rev. Lett. 94, 047204]
Experimental observation of the spin-Hall effect in a two dimensional
spin-orbit coupled semiconductor system
Experiment “A”
LED 1
a
IP
-Ip
LED 1
p n
n
y
LED 2
Ip
x
-1
-Ip
Experiment “B”
+Ip
x
z
0
LED 1
LED 1
1
0
z ILED 1
ILED 2
y
LED 2
1.505
1.510
1.515
-1
1.520
E [eV]
Co-planar spin LED in GaAs 2D hole gas: ~1% polarization
CP [%]
1.5m
channel
zI
x
y
1
CP [%]
Ip
+Ip
y
z
Self-consistent LDA & 6-band
calculations for the [001] QW
etched
GaAs
p-AlGaAs
2DHG
2DEG
i-GaAs
n-AlGaAs
E [meV]
20
a
0
s+
s20
HH+
9
2.5
5
1.5
1
0.
5
10
20
30
p2D [1011 cm-2]
0
HH-
LH
-20
-0.2
0.0
Modulation doping  weak disorder
p-type asymmetric QW  strong SO
0,2
ky [nm-1]
SO   / 
Close to the intrinsic SHE regime
sS [e/8]
3D electron-2D hole
Recombination
 / η [meV]
GaAs/AlGaAs superlattice
GaAs substrate
A dissipationless remark ...
Dissipative spin-polarized currents
in non-magnetic systems at B=0
Spin-current is along the applied electric field  proportional to
non-equilibrium distribution function
asymmetric scattering involving spin-flip
[Ganichev et al., cond-mat/0403641, Silov et al. APL 04]
Dissipationless intrinsic spin Hall effect
● Heuristic argument: transverse spin current generated between scattering events
Sinova, Culcer, Niu, Sinitsyn, Jungwirth,
MacDonald, PRL 92, 126603 (2004)
● Boltzman equation for current: transverse anomalous velocity in the equilibrium
band structure due to combined E and SO effects
Jungwirth, Niu, MacDonald, Phys. Rev. Lett. (2002)
Murakami, Nagaosa, Zhang, Science 301, 1348-1351 (2003).
anomalous velocity
Berry curvature: M.V. Berry, Proc. Royal Soc. London (1984)
normal group velocity
Caution: the dissipationless transverse intrinsic SHE is accompanied
by a dissipative longitudinal response to the electric field
Conventional
vertical spin-LED
Novel co-planar spin-LED
Y. Ohno et al.: Nature 402, 790 (1999)
R. Fiederling et al.: Nature 402, 787
(1999)
● Light emission near edge of the 2DHG
● 2DHG with strong and tunable SO
B. T. Jonker et al.: PRB 62, 8180 (2000)
● Spin detection directly in the 2DHG
X. Jiang et al.: PRL 90, 256603 (2003)
● No hetero-interface along the LED current
R. Wang et al.: APL 86, 052901 (2005)
Top Emission
…
Electrod
e
QW
I
p-AlGaAs
etched
2DHG
Side Emission
i-GaAs
2DEG
n--doped AlGaAs
Spin polarization detected through circular polarization of emitted light
Conventional
vertical spin-LED
Novel co-planar spin-LED
Y. Ohno et al.: Nature 402, 790 (1999)
R. Fiederling et al.: Nature 402, 787
(1999)
B. T. Jonker et al.: PRB 62, 8180 (2000)
X. Jiang et al.: PRL 90, 256603 (2003)
R. Wang et al.: APL 86, 052901 (2005)
Top Emission
● Spin detection directly in the 2DHG
● Light emission near edge of the 2DHG
● 2DHG with strong and tunable SO
…
Electrod
e
QW
● No hetero-interface along the LED current
I
p-AlGaAs
etched
2DHG
Side Emission
i-GaAs
2DEG
n--doped AlGaAs
Spin polarization detected through circular polarization of emitted light
CO-PLANAR pn - JUNCTION
Wafer design based on Schrödinger-Poisson simulations
18
3
p, n [10 /cm ]
0
0
1
z [nm]
p
0
2
EF
p-AlGaAs
p-AlGaAs
1
2
EF
etched
-100
i-GaAs
i-GaAs
VB
-1

n--doped
AlGaAs
CB
0
0
n
-100
-200
-2
3
p, n [10 /cm ]
1
Energy [eV]
2
n--doped
AlGaAs
n-  -doped AlGaAs
VB
-2
-1
CB
0
1
2
Energy [eV]
-200
z [nm]
18
p - region
● 2D transport characteristics
150
10
6
8
4
6
2
4
0
10
0
2
4
6
8
RHall [kW]
8
10
2.0
100
RHall [kW]
12
R2P [kW]
R2P-quadratic fit [W]
n - region
50
1.5
0
1.0
-50
0.5
-100
6
8
n = 0.8  1012 cm-2
Carrier density:
µHp  3400 cm2/Vs
pn - junction
0.8
1E-3
Reverse breakdown:
0.6
VR = -11.5V (T = 4.2K)
1E-5
Current [A]
Bias Current in A
● Light emission near
junction in p-region
● Light emission for e VBias 
EG
● Rectifying
0.4
0.2
Light emission
10 µm
1E-7
1E-9
300K
4.2K
1E-11
0.0
Bias Voltage in V
0.0
p = 2.0  1012 cm-2
µHn  2900 cm2/Vs
Mobility:
0
12
B [T]
B [T]
-12 -10 -8 -6 -4 -2
10
2
0.0
0.5
1.0
Voltage [V]
1.5
2.0
p n
-
+
1m
p-AlGaAs
p-AlGaAs
etched
i-GaAs
i-GaAs

n--doped
AlGaAs
n--doped
AlGaAs
n-  -doped AlGaAs
Electron – 2D holes
recombination
possible
Band-flattening if forward biased
z [nm]
0
-50
E
pAlGaAs
GaAs
-100
-150
-2
-1
0
1
Energy [eV]
2
z
Sub GaAs gap spectra analysis: PL vs EL
y
X:
bulk GaAs
excitons
z
GaAs
p-AlGaAs
etched
6
i-GaAs
4
n-AlGaAs
X
GaAs/AlGaAs superlattice
GaAs substrate
E [eV]
010
I
2
8
p1 AlGaAs
Wafer 2
6
GaAs
0
4
X
-1
-2
0
2
2
-50
-100
z [nm]
-150
1.48
1.49
1.50
E [eV]
1.51
1.52
0
Int [a.u.]
I:
recombination
with impurity
states
8
PL
2DHG
2DEG
Wafer 1
I
10
Sub GaAs gap spectra analysis: PL vs EL
+
y
X:
bulk GaAs
excitons
-
z
GaAs
p-AlGaAs
etched
EL
PL
2DHG
2DEG
6
i-GaAs
4
n-AlGaAs
B
A
X
GaAs/AlGaAs superlattice
GaAs substrate
E [eV]
010
8
p1 AlGaAs
Wafer 2
6
GaAs
0
4
X
-1
-2
0
2
I
2
B (A,C):
3D electron –
2D hole
recombination
8
-50
-100
z [nm]
-150
1.48
A
1.49
B
1.50
E [eV]
2
C
1.51
1.52
0
Int [a.u.]
I:
recombination
with impurity
states
Wafer 1
I
10
Sub GaAs gap spectra analysis: PL vs EL
++
y
X:
bulk GaAs
excitons
--
z
GaAs
p-AlGaAs
etched
6
i-GaAs
4
n-AlGaAs
B
A
X
GaAs/AlGaAs superlattice
GaAs substrate
E [eV]
010
8
p1 AlGaAs
Wafer 2 C
GaAs
0
A
B
-1
-2
0
2
I
2
B (A,C):
3D electron –
2D hole
recombination
-50
8
-100
z [nm]
-150
1.48
A
1.49
B
1.50
6
4
X
2
C
1.51
[eV]
E–
Bias dependent emission wavelength for 3D electron
2D hole
recombination [A. Y. Silov et al., APL 85, 5929 (2004)]
1.52
0
Int [a.u.]
I:
recombination
with impurity
states
EL
A
PL
2DHG
2DEG
B Wafer 1
I
10
CONTROL EXPERIMENT
2DHG
2DEG
p-n junction current only
(no SHE driving current)
Light polarization due to recombination with SO-split
hole-subband in a p-n LED under forward bias
Microscopic band-structure calculations of the 2DHG:
3D electron-2D hole
Recombination
0.50
a
0
s+
s20
HH+
0
0.25
<S>
E [meV]
20
spin-polarization of
HH+ and HH- subbands
<sz>HH<sx>HH+
0.00
<sx>HH-
-0.25
HH-
LH
-20
-0.2
0.0
0,2
-0.50
ky [nm-1]
s=1/2 electrons to j=3/2 holes plus selection rules
<sz>HH+
-0.2
0.0
0.2
ky [nm-1]
spin operators of holes: j=3s
 circular polarization of emitted light
 in-plane polarization
Circular Polarization of EL detected at
perpendicular to 2DHG plane
[eV]
1.488
z
1.494
1.500
1.506
1.513
1.519
7
j
EL intensity [a.u.]
6
2.5
5
4
0.0
3
2
-2.5
1
0
12.00
12.05
12.10
12.15
3
12.20
-1
energy [10 cm ]
12.25
-5.0
12.30
Degree of Circular polarization [%]
1.525
5.0
Inplane Circular Polarization (= 85º) detected at
B = + 3T.
[eV]
1.488
1.494
1.500
1.506
1.513
1.519
6
EL intensity [a.u.]
5
5
4
0
3
2
-5
1
0
12.00
12.05
12.10
12.15
3
12.20
-1
energy [10 cm ]
12.25
-10
12.30
Degree of Circular polarization [%]
1.525
10
Inplane Circular Polarization (= 85º) detected at
B =  3T.
[eV]
1.488
1.494
1.500
1.506
1.513
1.519
6
EL intensity [a.u.]
5
5
4
0
3
Wafer 1
I
2
EL
-5
PL
1
0
A
12.00
12.05
12.10
12.15
3
12.20
Int [a.u.]
Degree of Circular polarization [%]
1.525
10
B
12.25
1.50
E [eV]
8
6
4
-10
X
12.30
-1
energy [10 cm1.48
]
10
1.52
2
0
10
Circular Polarization
5
Bx = -3T
In-plane
0
z
α
detection angle
Bx = +3T
CP [%]
x, B
y
-5
20
-10
Bz = -3T
10
0
z, B
-10
x
y
-3 -2 -1 0 1 2 3
B [T]
Bz = +3T
1.500
1.505
E [eV]
-20
10
Circular Polarization
5
Bx = -3T
In-plane
0
z
α
detection angle
Bx = +3T
CP [%]
x, B
y
-5
20
-10
Bz = -3T
10
Perp.-to plane
0
z, B
detection angle
-10
x
y
-3 -2 -1 0 1 2 3
B [T]
Bz = +3T
1.500
1.505
-20
E [eV]
 NO perp.-to-plane component of polarization at B=0
 B≠0 behavior consistent with SO-split HH subband
Spin Hall Effect
SHE
         
j
         
 Perpendicular-to-plane
spin-polarization
EXPERIMENT
Spin Hall Effect
2DEG
2DHG
VD
VT
Spin Hall Effect Device
IP
LED 1
p
1.5m
Experiment “A”
channel
Ip
-Ip
zI
LED 1
n
n
y
x
z
Experiment “B”
LED 2
Ip
y
x
x
z ILED 1
ILED 2
y
Experiment “A”
Ip
-Ip
zI
LED 1
y
1
x
CP [%]
0
-1
Experiment “B”
Ip
z ILED 1
ILED 2
y
1
0
CP [%]
x
-1
1.505
1.510
1.515
1.520
Opposite perpendicular polarization for opposite Ip currents
or opposite edges  SPIN HALL EFFECT
Related documents