Download Cells

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
A TOUR OF THE CELL
OVERVIEW: THE IMPORTANCE OF CELLS
All organisms are made of cells
The cell is the simplest collection of matter
that can live
 Cell structure is correlated to cellular function
 All cells are related by their descent from earlier
cells


1
MICROSCOPY

Light Microscope

Resolution

Magnification

Staining
Organelles?

LE 6-2
10 m
Human height
1m
Unaided eye
Length of some
nerve and
muscle cells
0.1 m
Chicken egg
1 cm
Frog egg
1 mm
100 µm
Most plant and
animal cells
10 µm
Nucleus
Most bacteria
1 µm
100 nm
Mitochondrion
Smallest bacteria
Viruses
Ribosomes
10 nm
Electron microscope
Light microscope
Measurements:
1 centimeter (cm) = 10–2 meter (m) = 0.4 inch
1 millimeter (mm) = 10–3 m
1 micrometer (µm) = 10–3 mm = 10–6 m
1 nanometer (nm) = 10–3 µm = 10–9 m
Proteins
Lipids
1 nm
Small molecules
0.1 nm
Atoms
LE 6-3A
Brightfield (unstained
specimen)
50 µm
Brightfield (stained
specimen)
Phase-contrast
2
LE 6-3B
Differentialinterferencecontrast (Nomarski)
Fluorescence
50 µm
Confocal
50 µm
ELECTRON MICROSCOPES

Scanning

Transmission
LE 6-4
Scanning electron
microscopy (SEM)
Transmission electron
microscopy (TEM)
Cilia
Longitudinal
section of
cilium
1 µm
Cross section
of cilium
1 µm
3
CELL FRACTIONATION

What is it?

Why?
LE 6-5A
Homogenization
Tissue
cells
Homogenate
Differential centrifugation
LE 6-5B
1000 g
(1000 times the
force of gravity)
10 min
Supernatant poured
into next tube
20,000 g
20 min
80,000 g
60 min
Pellet rich in
nuclei and
cellular debris
150,000 g
3 hr
Pellet rich in
mitochondria
(and chloroplasts if cells
are from a plant)
Pellet rich in
“microsomes”
(pieces of plasma
membranes and
cells’ internal
membranes)
Pellet rich in
ribosomes
4
INTERNAL COMPARTMENTALIZATION?

The basic structural and functional unit

Prokaryotic

Eukaryotic
COMPARING PROKARYOTIC AND
EUKARYOTIC CELLS

Basic features of all cells:
1.
2.
3.
4.
PROKARYOTIC CELLS
1.
2.
3.
5
LE 6-6
Pili
Nucleoid
Ribosomes
Plasma
membrane
Cell wall
Bacterial
chromosome
Capsule
0.5 µm
Flagella
A typical
rod-shaped
bacterium
A thin section through the
bacterium Bacillus
coagulans (TEM)
EUKARYOTIC
1.
2.
3.
4.
LE 6-7
Surface area increases while
Total volume remains constant
5
1
1
Total surface area
(height x width x
number of sides x
number of boxes)
6
150
750
Total volume
(height x width x length
X number of boxes)
1
125
125
6
1.2
6
Surface-to-volume
ratio
(surface area  volume)
6
A VIEW OF THE EUKARYOTIC CELL
A eukaryotic cell has internal membranes that
partition the cell into organelles
 Plant and animal cells have most of the same
organelles

LE 6-9A
ENDOPLASMIC RETICULUM (ER
Nuclear envelope
Rough ER
Flagellum
Smooth ER
NUCLEUS
Nucleolus
Chromatin
Centrosome
Plasma membrane
CYTOSKELETON
Microfilaments
Intermediate filaments
Microtubules
Ribosomes:
Microvilli
Golgi apparatus
Peroxisome
Mitochondrion
Lysosome
In animal cells but not plant cells:
Lysosomes
Centrioles
Flagella (in some plant sperm)
LE 6-9B
Nuclear
envelope
NUCLEUS
Nucleolus
Chromatin
Centrosome
Rough
endoplasmic
reticulum
Smooth
endoplasmic
reticulum
Ribosomes
(small brown dots)
Central vacuole
Golgi
apparatus
Microfilaments
Intermediate
filaments
Microtubules
CYTOSKELETON
Mitochondrion
Peroxisome
Chloroplast
Plasma
membrane
Cell wall
Plasmodesmata
Wall of adjacent cell
In plant cells but not animal cells:
Chloroplasts
Central vacuole and tonoplast
Cell wall
Plasmodesmata
7
THE NUCLEUS: GENETIC LIBRARY OF THE
CELL

Function?

Nuclear envelope
LE 6-10
Nucleus
Nucleus
1 µm
Nucleolus
Chromatin
Nuclear envelope:
Inner membrane
Outer membrane
Nuclear pore
Pore
complex
Rough ER
Surface of nuclear envelope
Ribosome
1 µm
0.25 µm
Close-up of nuclear
envelope
Pore complexes (TEM)
Nuclear lamina (TEM)
RIBOSOMES

Structure

Function

Where?
8
LE 6-11
Ribosomes
ER
Cytosol
Endoplasmic
reticulum (ER)
Free ribosomes
Bound ribosomes
Large
subunit
Small
subunit
0.5 µm
TEM showing ER
and ribosomes
Diagram of
a ribosome
ENDOMEMBRANE SYSTEM

Components of the endomembrane system:
1.
2.
3.
4.
5.
6.

These components are either continuous or
connected via transfer by vesicles
ENDOPLASMIC RETICULUM

More than half of the total membrane

Continuous with the nuclear envelope

Two distinct regions
1.
2.
9
LE 6-12
Smooth ER
Rough ER
Nuclear
envelope
ER lumen
Cisternae
Ribosomes
Transport vesicle
Smooth ER
Transitional ER
Rough ER
200 nm
FUNCTIONS OF SMOOTH ER
1.
2.
3.
4.
FUNCTIONS OF ROUGH ER
1.
2.
10
GOLGI APPARATUS

Structure

Functions
1.
2.
3.
LE 6-13
Golgi
apparatus
cis face
(“receiving” side of
Golgi apparatus)
Vesicles also
transport certain
proteins back to ER
Vesicles move
from ER to Golgi
Vesicles coalesce to
form new cis Golgi cisternae
0.1 µm
Cisternae
Cisternal
maturation:
Golgi cisternae
move in a cisto-trans
direction
Vesicles form and
leave Golgi, carrying
specific proteins to
other locations or to
the plasma membrane for secretion
Vesicles transport specific
proteins backward to newer
Golgi cisternae
trans face
(“shipping” side of
Golgi apparatus)
TEM of Golgi apparatus
LYSOSOME

Structure

Function
1.
2.
11
LE 6-14A
1 µm
Nucleus
Lysosome
Lysosome contains Food vacuole Hydrolytic
active hydrolytic
enzymes digest
fuses with
enzymes
food particles
lysosome
Digestive
enzymes
Plasma
membrane
Lysosome
Digestion
Food vacuole
Phagocytosis: lysosome digesting food
LE 6-14B
Lysosome containing
two damaged organelles
1 µm
Mitochondrion
fragment
Peroxisome
fragment
Lysosome fuses with
vesicle containing
damaged organelle
Hydrolytic enzymes
digest organelle
components
Lysosome
Digestion
Vesicle containing
damaged mitochondrion
Autophagy: lysosome breaking down
damaged organelle
VACUOLE

Structure

One or many?
12

Functions



LE 6-15
Central vacuole
Cytosol
Tonoplast
Nucleus
Central
vacuole
Cell wall
Chloroplast
5 µm
LE 6-16-1
Nucleus
Rough ER
Smooth ER
Nuclear envelope
13
LE 6-16-2
Nucleus
Rough ER
Smooth ER
Nuclear envelope
cis Golgi
Transport vesicle
trans Golgi
LE 6-16-3
Nucleus
Rough ER
Smooth ER
Nuclear envelope
cis Golgi
Transport vesicle
Plasma
membrane
trans Golgi
MITOCHONDRIA


Where? Who?
Structure
14

Function
LE 6-17
Mitochondrion
Intermembrane space
Outer
membrane
Free
ribosomes
in the
mitochondrial
matrix
Inner
membrane
Cristae
Matrix
Mitochondrial
DNA
100 nm
CHLOROPLASTS

Where? Who?

Plastids

Structure
15

Function
LE 6-18
Chloroplast
Ribosomes
Stroma
Chloroplast
DNA
Inner and outer
membranes
Granum
1 µm
Thylakoid
PEROXISOMES

Structure

Function
16
LE 6-19
Chloroplast
Peroxisome
Mitochondrion
1 µm
CYTOSKELETON

Network of fibers

Organization

Three types of molecular structures:
1.
2.
3.
LE 6-20
Microtubule
Microfilaments
0.25 µm
17
ROLES OF THE CYTOSKELETON
1.
2.
3.
4.
LE 6-21A
Vesicle
ATP
Receptor for
motor protein
Motor protein
(ATP powered)
Microtubule
of cytoskeleton
LE 6-21B
Microtubule
Vesicles
0.25 µm
18
COMPONENTS OF THE CYTOSKELETON
19
MICROTUBULES

Structure

Functions:
1.
2.
3.
CENTROSOMES AND CENTRIOLES

Centrosome

Centrioles
LE 6-22
Centrosome
Microtubule
Centrioles
0.25 µm
Longitudinal section Microtubules
of one centriole
Cross section
of the other centriole
20
CILIA AND FLAGELLA
Common Ultrastructure

1.
2.
3.
LE 6-23A
Direction of swimming
Motion of flagella
5 µm
LE 6-23B
Direction of organism’s movement
Direction of
active stroke
Motion of cilia
Direction of
recovery stroke
15 µm
21
LE 6-24
0.1 µm
Outer microtubule
doublet
Dynein arms
Central
microtubule
Plasma
membrane
Cross-linking
proteins inside
outer doublets
Microtubules
Plasma
membrane
Basal body
Radial
spoke
0.5 µm
0.1 µm
Triplet
Cross section of basal body

How dynein “walking” moves flagella and cilia:
1.
2.
3.
LE 6-25A
Microtubule
doublets
ATP
Dynein arm
Dynein “walking”
22
LE 6-25B
Cross-linking
proteins inside
outer doublets
ATP
Anchorage
in cell
Effect of cross-linking proteins
Wavelike motion
MICROFILAMENTS (ACTIN FILAMENTS)

Structure
LE 6-26
Microvillus
Plasma membrane
Microfilaments (actin
filaments)
Intermediate filaments
0.25 µm
23
 Function
LE 6-27A
Muscle cell
Actin filament
Myosin filament
Myosin arm
Myosin motors in muscle cell contraction
LE 6-27B
Cortex (outer cytoplasm):
gel with actin network
Inner cytoplasm: sol
with actin subunits
Extending
pseudopodium
Amoeboid movement
24
LE 6-27C
Nonmoving
cytoplasm (gel)
Chloroplast
Streaming
cytoplasm
(sol)
Vacuole
Parallel actin
filaments
Cell wall
Cytoplasmic streaming in plant cells
INTERMEDIATE FILAMENTS

Structure

Function
CELL WALLS OF PLANTS

Extracellular

Function

Basic structure
25
CELL WALLS OF PLANTS


May have multiple layers

Primary cell wall:

Middle lamella:

Secondary cell wall (in some cells):
Plasmodesmata
LE 6-28
Central
vacuole
of cell
Plasma
membrane
Secondary
cell wall
Primary
cell wall
Central
vacuole
of cell
Middle
lamella
1 µm
Central vacuole
Cytosol
Plasma membrane
Plant cell walls
Plasmodesmata
THE EXTRACELLULAR MATRIX (ECM)

Animal cells
Structure

Function

1.
2.
3.
4.
26
LE 6-29A
Collagen
fiber
Proteoglycan
complex
EXTRACELLULAR FLUID
Fibronectin
Plasma
membrane
Integrin
CYTOPLASM
Microfilaments
LE 6-29B
Proteoglycan
complex
Polysaccharide
molecule
Carbohydrates
Core
protein
Proteoglycan
molecule
INTERCELLULAR JUNCTIONS

Functions
27
PLANTS: PLASMODESMATA

What are they?

What do they do?
LE 6-30
Cell walls
Interior
of cell
Interior
of cell
0.5 µm
Plasmodesmata
Plasma membranes
ANIMALS

Tight junctions

Desmosomes

Gap junctions
28
LE 6-31
Tight junctions prevent
fluid from moving
across a layer of cells
Tight junction
0.5 µm
Tight junction
Intermediate
filaments
Desmosome
1 µm
Space
between
cells
Gap
junctions
Plasma membranes
of adjacent cells
Gap junction
Extracellular
matrix
0.1 µm
THE CELL: A LIVING UNIT GREATER
THAN THE SUM OF ITS PARTS
Cells rely on the integration of structures and
organelles in order to function
 For example, a macrophage’s ability to destroy
bacteria involves the whole cell, coordinating
components such as the cytoskeleton, lysosomes,
and plasma membrane

5 µm
LE 6-32
29
Related documents