Download AP Calculus

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Avon High School
VU Calculus
nd
2 Semester FINAL EXAM REVIEW
Unit 5 (3.5-3.7, 3.9)
For 1-4, find the limit.
3

1.) lim  5  5 
x 
x 

 x3 
2.) lim 

x  7 x  5


 x7 
3.) lim  2

x  3 x  4


7 
 5
4.) lim   x  5 
x 
x 
 3
For 5 & 6, determine the slant asymptote of the graph of f  x  .
5.) f  x  
x2  6 x  5
x2
6.) f  x  
2 x2  x  2
x 1
7.) Find two positive numbers whose product is 185 and whose sum is a minimum.
8.) Find the length and width of a rectangle that has perimeter 16 meters and a maximum area.
9.) Find the length and width of a rectangle that has an area of 392 ft 2 and whose perimeter is a minimum.
10.) Find the equation of the tangent line to the graph of f  x  
22
 11 
at the point  2,  .
2
x
 2
11.) Find the differential dy of the function y  4 x 2  3x  4 .
Unit 6 (4.2 & 4.3)
9
1.) Find the sum:
  4i  7 
2.) Use sigma notation to write the sum:
i 3
 i
30
3.) Use the properties of summation to evaluate the sum:
i 1
2
4
4
4
4


 ... 
11 1 2 1 3
1  21
 7i 
4.) Use left endpoints and 6 rectangles to find the approximation of the area of the region between the graph of
 
the function y  cos  2 x  and the x-axis over the interval  0,  .
 2
4
5.) Find the limit of s  n  as n   for s  n   7
n
 n3  n  14 

.
5


6.) The graph of the function f  x   16  x2 is given. Write the definite integral that
yields the area of the shaded region.
2
7.) Evaluate the integral  12x dx given
3
3
5
 x dx  2 .
2
6
6
671
8.) Evaluate the integral   24 x  2  dx given  x dx 
,
4
5
5
2
3
6
91
5 x dx  3 ,
2
6
6
11
5 x dx  2 , 5 dx  1 .
9.) The graph of f consists of line segments, as shown in the figure. Evaluate
10
the definite integral
 f  x  dx using geometric formulas.
2
Unit 7 (4.1, 4.4, 4.5)
For 1-4, find the indefinite integral.
1.)
3
  20 x  6 x  3 dx
2.)

5.) Solve the differential equation
7
x 4 dx
3.)
6t 2  8t  15
dt
 t4
4.)
  9sin x  3cos x  dx
dG
 16t 7 given G  2  3 .
dt
6.) A ball is thrown vertically upwards from a height of 7 ft with an initial velocity of 64 ft/sec. How high will the
ball go?
For 7-10, evaluate the definite integral.
8
5
3
7.)   5 z  2  dz
8.)  5 dx
x
1
2
5
5
 9

9.)   x 5  x 9  dx

2
6
10.)
  2 x  2 cos x  dx
0
11.) Find the area of the region bounded by the graphs of the equations y  x6  x, x  4, y  0 .
For 12 & 13, find the average value of the function on the given interval.
z2  4
, 3 z 7
12.) f  x   30  6 x2 ,  2  x  2
13.) f  z  
z2
14.) Find F   x  given F  x  
3 x2
  6t  1 dt .
2
For 15-20, find the indefinite integral.
15.)
 1  3x 
18.)
 7  x
4
 x 3  x  dx
2
3
dx
16.)
x dx
19.)   sin  2 x  dx
5
21.) Evaluate the definite integral:

3
5x
17.)

20.)
 sin
x
2
 4
dx
5
cos x
dx
8
x
1
dx
4x  3
Unit 8 (5.1-5.3)
For 1 & 2, state the domain of the function.
1.) f  x   16ln  4 x 
2.) f  x   6  ln  x 15
3.) Write 13ln x  15ln  x 2  7  as a single quantity.
4.) Find an equation of the tangent line to the graph of y  ln  x14  at the point 1,0  .
For 5-8, find the derivative of the function.
5.) f  x   ln  5x  3
6.) y  ln x 2  1
9.) Use implicit differentiation to find
 5x 
7.) f  x   ln  2

 x 7
8.) y  ln  ln x12 
dy
for x 4  7 ln y  6 .
dx
For 10-17, find the indefinite integral.
1
dx
10.) 
x 8
14.)
1
 x ln  x  dx
13
e
18.) Evaluate

 6  ln x 
1
 ln x 
6
x
dx
11.)  2
4x  7
x 2  6 x  11
dx
12.) 
x  16
13.)

15.)  tan  3  d
16.)  csc  36x  dx
17.)
 sin 12  d
20.) f  x   x3  9
21.) f  x   2 x2 ,  x  0
22.) f  x   3  3 2 x  10
x
dx
cos 12 
2
x
For 19-22, find f 1  x  .
19.) f  x   9 x  7
23.) Find
dy
at the point  6,1 for the equation x  y3  9 y 2  2
dx
Unit 9 (5.4, 5.5, 5.8)
For 1-4, solve the equation for x.
1.) eln9 x  4
2.) 4  3e3 x  10
4.) ln  x  6   6
3.) ln x 9  6
5
For 5-10, find the derivative.
5.) f  x   7e 4 x
2
8.) f  x   6e8 x  2e6 x
 e5 x  1 
7.) f  x   ln  x

 e 1 
6.) f  x   x5e x
9.) f  x  
ex
1  4 x2
10.) f  x   3ex cos x
For 11-13, solve the equation for x.
11.) log2 x  log 2  x 1  1
12.) 5  43 x5   225
13.) log3  x  6   5
For 14-16, find the derivative.
14.) f  t   t 9 47t
 x3  5 
15.) f  x   log 7  3

 x 7
 x2  3 
16.) f  x   log 6 

 x 8 
17.) Find an equation of the tangent line to the graph of y  log 2 x at the point  32,5 .
For 18 & 19, find the indefinite integral.
18.)  75 x dx
For 20-22, find the derivative.
20.) y  coth 8x 
19.)
21.) y  ln  cosh 4  7 x  
x
8
5  dx
 x9
22.) g  x   2sec h2  9 x 
For 23 & 24, find the indefinite integral.
23.)  sinh  9  8x  dx
Unit 10 (6.2)
For 1-3, solve the differential equation.
dy
 x 8
1.)
dx
24.)
2.) y 
6x
y
9
8
2 x 
x
csc
h
  dx

9
3.) y 
4.) Find the function y  f  t  passing through the point  0,15 with the first derivative
x
8y
dy 1
 t.
dt 6
5.) The half-life of the carbon isotope C-14 is approximately 5715 years. If the initial quantity of the isotope is 30
grams, what is the amount left after 10,000 years?
6.) The half-life of the carbon isotope C-14 is approximately 5715 years. If the amount left after 3000 years is 1.6
grams, what is the amount after 6000 years?
Related documents