Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Avon High School VU Calculus nd 2 Semester FINAL EXAM REVIEW Unit 5 (3.5-3.7, 3.9) For 1-4, find the limit. 3 1.) lim 5 5 x x x3 2.) lim x 7 x 5 x7 3.) lim 2 x 3 x 4 7 5 4.) lim x 5 x x 3 For 5 & 6, determine the slant asymptote of the graph of f x . 5.) f x x2 6 x 5 x2 6.) f x 2 x2 x 2 x 1 7.) Find two positive numbers whose product is 185 and whose sum is a minimum. 8.) Find the length and width of a rectangle that has perimeter 16 meters and a maximum area. 9.) Find the length and width of a rectangle that has an area of 392 ft 2 and whose perimeter is a minimum. 10.) Find the equation of the tangent line to the graph of f x 22 11 at the point 2, . 2 x 2 11.) Find the differential dy of the function y 4 x 2 3x 4 . Unit 6 (4.2 & 4.3) 9 1.) Find the sum: 4i 7 2.) Use sigma notation to write the sum: i 3 i 30 3.) Use the properties of summation to evaluate the sum: i 1 2 4 4 4 4 ... 11 1 2 1 3 1 21 7i 4.) Use left endpoints and 6 rectangles to find the approximation of the area of the region between the graph of the function y cos 2 x and the x-axis over the interval 0, . 2 4 5.) Find the limit of s n as n for s n 7 n n3 n 14 . 5 6.) The graph of the function f x 16 x2 is given. Write the definite integral that yields the area of the shaded region. 2 7.) Evaluate the integral 12x dx given 3 3 5 x dx 2 . 2 6 6 671 8.) Evaluate the integral 24 x 2 dx given x dx , 4 5 5 2 3 6 91 5 x dx 3 , 2 6 6 11 5 x dx 2 , 5 dx 1 . 9.) The graph of f consists of line segments, as shown in the figure. Evaluate 10 the definite integral f x dx using geometric formulas. 2 Unit 7 (4.1, 4.4, 4.5) For 1-4, find the indefinite integral. 1.) 3 20 x 6 x 3 dx 2.) 5.) Solve the differential equation 7 x 4 dx 3.) 6t 2 8t 15 dt t4 4.) 9sin x 3cos x dx dG 16t 7 given G 2 3 . dt 6.) A ball is thrown vertically upwards from a height of 7 ft with an initial velocity of 64 ft/sec. How high will the ball go? For 7-10, evaluate the definite integral. 8 5 3 7.) 5 z 2 dz 8.) 5 dx x 1 2 5 5 9 9.) x 5 x 9 dx 2 6 10.) 2 x 2 cos x dx 0 11.) Find the area of the region bounded by the graphs of the equations y x6 x, x 4, y 0 . For 12 & 13, find the average value of the function on the given interval. z2 4 , 3 z 7 12.) f x 30 6 x2 , 2 x 2 13.) f z z2 14.) Find F x given F x 3 x2 6t 1 dt . 2 For 15-20, find the indefinite integral. 15.) 1 3x 18.) 7 x 4 x 3 x dx 2 3 dx 16.) x dx 19.) sin 2 x dx 5 21.) Evaluate the definite integral: 3 5x 17.) 20.) sin x 2 4 dx 5 cos x dx 8 x 1 dx 4x 3 Unit 8 (5.1-5.3) For 1 & 2, state the domain of the function. 1.) f x 16ln 4 x 2.) f x 6 ln x 15 3.) Write 13ln x 15ln x 2 7 as a single quantity. 4.) Find an equation of the tangent line to the graph of y ln x14 at the point 1,0 . For 5-8, find the derivative of the function. 5.) f x ln 5x 3 6.) y ln x 2 1 9.) Use implicit differentiation to find 5x 7.) f x ln 2 x 7 8.) y ln ln x12 dy for x 4 7 ln y 6 . dx For 10-17, find the indefinite integral. 1 dx 10.) x 8 14.) 1 x ln x dx 13 e 18.) Evaluate 6 ln x 1 ln x 6 x dx 11.) 2 4x 7 x 2 6 x 11 dx 12.) x 16 13.) 15.) tan 3 d 16.) csc 36x dx 17.) sin 12 d 20.) f x x3 9 21.) f x 2 x2 , x 0 22.) f x 3 3 2 x 10 x dx cos 12 2 x For 19-22, find f 1 x . 19.) f x 9 x 7 23.) Find dy at the point 6,1 for the equation x y3 9 y 2 2 dx Unit 9 (5.4, 5.5, 5.8) For 1-4, solve the equation for x. 1.) eln9 x 4 2.) 4 3e3 x 10 4.) ln x 6 6 3.) ln x 9 6 5 For 5-10, find the derivative. 5.) f x 7e 4 x 2 8.) f x 6e8 x 2e6 x e5 x 1 7.) f x ln x e 1 6.) f x x5e x 9.) f x ex 1 4 x2 10.) f x 3ex cos x For 11-13, solve the equation for x. 11.) log2 x log 2 x 1 1 12.) 5 43 x5 225 13.) log3 x 6 5 For 14-16, find the derivative. 14.) f t t 9 47t x3 5 15.) f x log 7 3 x 7 x2 3 16.) f x log 6 x 8 17.) Find an equation of the tangent line to the graph of y log 2 x at the point 32,5 . For 18 & 19, find the indefinite integral. 18.) 75 x dx For 20-22, find the derivative. 20.) y coth 8x 19.) 21.) y ln cosh 4 7 x x 8 5 dx x9 22.) g x 2sec h2 9 x For 23 & 24, find the indefinite integral. 23.) sinh 9 8x dx Unit 10 (6.2) For 1-3, solve the differential equation. dy x 8 1.) dx 24.) 2.) y 6x y 9 8 2 x x csc h dx 9 3.) y 4.) Find the function y f t passing through the point 0,15 with the first derivative x 8y dy 1 t. dt 6 5.) The half-life of the carbon isotope C-14 is approximately 5715 years. If the initial quantity of the isotope is 30 grams, what is the amount left after 10,000 years? 6.) The half-life of the carbon isotope C-14 is approximately 5715 years. If the amount left after 3000 years is 1.6 grams, what is the amount after 6000 years?