Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Ab initio nuclear response functions for dark matter searches Daniel Gazda Chalmers University of Technology Progress in Ab Initio Techniques in Nuclear Physics TRIUMF, Feb 28 – Mar 3, 2017 Collaborators: C. Forssén, R. Catena (Chalmers) Funded by the Knut and Alice Wallenberg foundation Outline: Introduction Motivation Direct detection and dark matter–nucleon/nucleus interaction Methodology Nonrelativistic EFT for dark matter–nucleus interaction Ab initio no-core shell model Results Nuclear response functions Physical observables Conclusions & outlook Introduction Methodology Results Conclusions Motivation Dark matter makes up about 5/6 of the total matter in the Universe. Evidence for dark matter rotational curves of galaxies cosmic microwave background, large structure formation gravitational lensing, the Bullet Cluster ... New type of particle provides simple explanation. WIMP is a well motivated candidate. D. Gazda (Chalmers) Ab initio nuclear response functions for DM searches 3 / 15 Introduction Methodology Results Conclusions Motivation WIMP dark matter searches χ χ SM SM χ SM SM SM χ χ χ SM production collider searches D. Gazda (Chalmers) annihilation indirect searches γ, ν, CR telescopes scattering direct detection deep underground detectors Ab initio nuclear response functions for DM searches 4 / 15 Introduction Methodology Results Conclusions 10−39 XENON1T Sensitivity in 2 t ⋅y DAMA/Na 10−40 CDMS-Si (2013) −41 Expected limit (90% CL) ± 1 σ expected ± 2 σ expected DAMA/I 10 XENON10 (2013) 10−42 10 PandaX SuperCDMS (2014) −43 10−44 DarkS 10−46 013) 2017 XE T (2 t NON1 10−47 ⋅y) ⋅y) T (20 t Nn XENO covery ino Dis −48 Billard 10−49 6 10 20 30 100 (2015) LUX (2 012) N100 (2 XENO 10−45 10 ide-50 (2014) 2019 LZ 2019+ 013) limit (2 eutr et al., N 200 1000 2000 10000 WIMP mass [GeV/c2] taken from: XENON JCAP 1604,WIMP-nucleon 027 (2016) interaction: the Figure 15. XENON1T sensitivity (90%collaboration, C.L.) to spin-independent solid blue line represents the median value, while the 1σ and 2σ sensitivity bands are indicated in green and yellow respectively. The dotted blue line, visible at low WIMP masses, shows the XENON1T D. Gazda (Chalmers) Ab initio nuclear response functions for DM searches 5 / 15 JCAP04(20 WIMP-nucleon Cross Section [cm 2] Current status Introduction Methodology Results Conclusions Dark matter direct detection & nuclear physics new physics ΛUV – heavy mediators SM + DM EFT vEW – EW symmetry breaking 5-flavor QCD + DM EFT mb mc 3-flavor QCD + DM EFT ΛQCD – chiral symmetry breaking heavy baryon chiral EFT + DM mπ direct detection NREFT D. Gazda (Chalmers) Ab initio nuclear response functions for DM searches 6 / 15 Introduction Methodology Results Conclusions Dark matter direct detection & nuclear physics new physics ΛUV – heavy mediators SM + DM EFT vEW – EW symmetry breaking 5-flavor QCD + DM EFT Cirigliano et al. (JHEP 1210, 25 (2012)) mb mc Darmstadt group: Menéndez, Gazit, Schwenk, Klos et al. 3-flavor QCD + DM EFT (e.g. PRD 94, 063505 (2016)) ΛQCD – chiral symmetry breaking heavy baryon chiral EFT + DM mπ direct detection NREFT Fitzpatrick, Haxton et al. (JCAP 1302, 4 (2013)) D. Gazda (Chalmers) Ab initio nuclear response functions for DM searches 6 / 15 Introduction Methodology Results Conclusions Nonrelativistic EFT for χ − N/nucleus interaction Construct the most general form of dark matter–nucleon interaction. (Fitzpatrick et al., JCAP 1302, 4 (2013)) momentum conservation together with the requirement of Galilean invariance identifies 4 basic operators: iq̂, v̂⊥ = v̂ + 2µq̂χN , Ŝχ , ŜN all possible χ − N interaction terms (up to q 2 ): Ô1 = 1χN Ô3 = iŜN · q̂ mN × v̂⊥ Ô9 = iŜχ · ŜN × Ô4 = Ŝχ · ŜN Ô5 = iŜχ · mq̂ × v̂⊥ N Ô6 = Ŝχ · mq̂ ŜN · mq̂ N Ô7 = ŜN · v̂⊥ Ô8 = Ŝχ · v̂⊥ N Ô10 = Ô11 = q̂ mN iŜN · mq̂ N iŜχ · mq̂ N Ô12 = Ŝχ · ŜN × v̂⊥ Ô13 = i Ŝχ · v̂⊥ ŜN · mq̂ N Ô14 = i Ŝχ · mq̂ ŜN · v̂⊥ N h Ô15 = − Ŝχ · mq̂ ŜN × v̂⊥ · N q̂ mN i → χ−nucleus Hamiltonian: A X X X (i) τ cjτ Ôj t(i) ĤχA = i=1 τ =0,1 D. Gazda (Chalmers) j Ab initio nuclear response functions for DM searches 7 / 15 Introduction Methodology Results Conclusions Nonrelativistic EFT for χ − N/nucleus interaction Rate of nuclear scattering events in direct detection experiments: dR ρχ = 2 dq mA mχ Z d3 ~v f (~v + ~ve )v dσ dq 2 mχ , ρχ , f : dark matter mass, density, velocity distributions ← astrophysics dσ dq 2 : scattering cross section ← particle and nuclear physics " # X X X dσ 1 q2 ττ0 ττ0 ττ0 ττ0 = R` W` + 2 R` W` dq 2 (2J + 1)v 2 0 mN 0 00 00 00 τ,τ `=Φ ,Φ M, Φ̃0 ,∆,∆Σ0 `=M,Σ ,Σ dark matter response functions Rmτ τ nuclear response functions D. Gazda (Chalmers) 0 W`τ τ q 2 0 2 vT⊥2 , mq 2 , ciτ cjτ 0 N Ab initio nuclear response functions for DM searches 8 / 15 Introduction Methodology Results Conclusions Nonrelativistic EFT for χ − N/nucleus interaction nuclear response functions: 0 ττ WAB (q 2 ) = X L≤2J hJ, T , MT || ÂL;τ (q) ||J, T , MT ihJ, T , MT || B̂L;τ 0 (q) ||J, T , MT i ÂL;τ , B̂L;τ – nuclear response operators: MLM;τ (q) = A X τ MLM (qρi )t(i) , i=1 A X 1→ − M τ ∇ ρi × MLL (qρi ) · ~ σ(i) t(i) , q i=1 A X 1→ − τ 00 ∇ ρi MLM (qρi ) · ~ σ(i) t(i) , ΣLM;τ (q) = q i=1 0 ΣLM;τ (q) = −i ∆LM;τ (q) = A X M MLL (qρi ) i=1 A X · 1→ − τ ∇ ρi t(i) , q 1→ 1→ 1 M − − M τ ∇ ρi × MLL (qρi ) · ~ σ(i) × ∇ ρi + MLL (qρi ) · ~ σ(i) t(i) , q 2 i=1 A X 1→ 1→ − − 00 τ ΦLM;τ (q) = i ∇ ρi MLM (qρi ) · ~ σ(i) × ∇ ρi t(i) q q i=1 0 Φ̃LM;τ (q) = q nuclear ground-state wave functions |J, T , MT i calculated within no-core shell model (focus on 3 He and 4 He first) D. Gazda (Chalmers) Ab initio nuclear response functions for DM searches 9 / 15 Introduction Methodology Results Conclusions No-core shell model Ab initio all particles are active (no rigid core) exact Pauli principle realistic internucleon interactions controllable approximations Hamiltonian is diagonalized in a finite A-particle harmonic oscillator basis NCSM results converge to exact results D. Gazda (Chalmers) Ab initio nuclear response functions for DM searches 10 / 15 Introduction Methodology Results Conclusions Input Hamiltonians VNN and VNNN potentials derived from chiral EFT long-range part of the interaction, π-exchange, predicted by chiral perturbation theory short-range part parametrized by contact interactions, LECs fitted to experimental data N2LOsim Hamiltonian family (Carlsson et al., PRX 6, 011019 (2016)) parameters fitted to reproduce simultaneously πN, NN, and NNN low-energy observables lab,max TNN ≤ 125, . . . , 290 MeV → 42 Hamiltonians ΛEFT ≤ 450, . . . , 600 MeV all Hamiltonians give equally good description on the fit data D. Gazda (Chalmers) Ab initio nuclear response functions for DM searches 11 / 15 Introduction Methodology Results Conclusions Results Aim quantify the impact of nuclear structure uncertainties on the interpretation of data from dark matter searches focus on 3 He and 4 He nuclei – converged (exact) NCSM calculations of ground-state wave functions possible calculate all relevant nuclear response functions using the complete N2LOsim Hamiltonian family study the impact of systematical uncertainties of nuclear response functions on the rate of nuclear recoil events in directional dark matter detection D. Gazda (Chalmers) Ab initio nuclear response functions for DM searches 12 / 15 Introduction Results Conclusions He nuclear response functions and recoil rates 1.4 7 00 WM 1.2 ×10−21 Ô5 00 × 102 WΦ 00 Ô15 6 00 WΦ 00 M × 10 1.0 dR/d cos θ (kg−1 day−1 ) 00 SM WM 0.8 W 00 4 Methodology 0.6 0.4 0.2 5 4 3 2 1 0.0 −0.2 0.0 0.1 0.2 0.3 0.4 q (GeV) 0.5 0.6 Figure: Isoscalar nuclear response functions of 4 He as functions of the recoil momentum q calculated within ab initio NCSM and SM. D. Gazda (Chalmers) 0 −1.0 −0.5 0.0 cos θ 0.5 1.0 Figure: Differential rate of nuclear recoil events as a function of the recoil direction. Ab initio nuclear response functions for DM searches 13 / 15 Introduction Results Conclusions He nuclear response functions and recoil rates 1.4 7 00 WM 1.2 ×10−21 Ô5 00 × 102 WΦ 00 Ô15 6 00 WΦ 00 M × 10 1.0 dR/d cos θ (kg−1 day−1 ) 00 SM WM 0.8 W 00 4 Methodology 0.6 0.4 0.2 5 4 3 2 1 0.0 −0.2 0.0 0.1 0.2 0.3 0.4 q (GeV) 0.5 0.6 Figure: Isoscalar nuclear response functions of 4 He as functions of the recoil momentum q calculated within ab initio NCSM and SM. D. Gazda (Chalmers) 0 −1.0 −0.5 0.0 cos θ 0.5 1.0 Figure: Differential rate of nuclear recoil events as a function of the recoil direction. Ab initio nuclear response functions for DM searches 13 / 15 Introduction 3 Methodology Results Conclusions He nuclear response functions and recoil rates 1.6 3.0 1.4 τ, τ 0 = 0, 0 τ, τ 0 = 0, 0 SM 1.2 τ, τ 0 = 1, 1 2.0 0 τ, τ 0 = 0, 1(1, 0) τ, τ 0 = 0, 1(1, 0) SM 0.8 WΦτ 00τ 0 τ, τ 0 = 0, 0 τ, τ 0 = 0, 1 (1, 0) 2.5 1.0 ττ WM ×10−3 0.6 1.2 ×10−6 1.5 Ô4 1.0 Ô5 1.0 Ô15 0.5 0.2 0.0 0.0 −0.2 0.0 4 τ, τ 0 = 0, 1(1, 0) τ, τ 0 = 0, 1(1, 0) SM 0.1 0.2 0.3 0.4 q (GeV) 0.5 −0.5 0.0 0.6 ×10−1 1.4 3 τ, τ 0 = 0, 0 τ, τ 0 = 0, 1 (1, 0) 1.2 2 τ, τ 0 = 1, 1 τ, τ 0 = 0, 0 (1, 1) SM 1.0 0.2 0.3 0.4 q (GeV) 0.5 0.6 τ, τ 0 = 0, 0 τ, τ 0 = 0, 1 (1, 0) τ, τ 0 = 1, 1 τ, τ 0 = 0, 1 (1, 0) SM 0.8 0.6 0.4 0.2 ττ W∆ 0 0.8 0 1 WΣτ 0τ 0.1 ×10−3 dR/d cos θ (kg−1 day−1 ) 0.4 0 0.6 −1 0.4 −2 0.2 −3 −4 0.0 0.0 −1.0 0.0 0.1 0.2 0.3 q (GeV) 0.4 0.5 0.6 −0.2 0.0 0.1 0.2 0.3 0.4 q (GeV) 0.5 0.6 −0.5 0.0 cos θ 0.5 1.0 Figure: Differential rate of nuclear recoil events as a function of the recoil direction. Figure: Nuclear response functions of 3 He as functions of the recoil momentum q calculated within ab initio NCSM and SM. D. Gazda (Chalmers) Ab initio nuclear response functions for DM searches 14 / 15 Introduction Methodology Results Conclusions Conclusions Ab initio framework for computation of nuclear response functions for dark matter scattering off nuclei have been developed. Certain nuclear response functions suffer from large uncertainties which propagate into physical observables. Ab initio nuclear structure calculations result in additional response functions not appearing in SM calculations. arXiv:1612.09165 [hep-ph] Outlook: response functions of 16 O (CRESST-II), 19 F (PICO), Xe, . . . inelastic scattering, two-body meson-exchange currents, . . . D. Gazda (Chalmers) Ab initio nuclear response functions for DM searches 15 / 15