Download ee 572 optimization theory

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
EE 572 OPTIMIZATION THEORY
SOLVED EXAMPLES
1-)
minimize f (x)  aT x
x  1,
subject to
x
a, x 
n
l ( x,  )  f ( x )   ( x  1 )
2
Lagrangian
  x l ( x,  )  f ( x)  2 xT  aT  2 xT  0  x  

Substitute in the constraint equation
2
1

2  a
2
a
x  
a
*
a
aT a
f (x )  
= 
 a
a
a
*
and
Note: x = xT x  x12  x22 
2

a
x 
a
2

2
x  (2 x1 2 x2
x

xn2
2 xn )T  2x
 x  2 xT
2
2-)
minimize f (x)  x
subject to aT x  c,
2
x
Lagrangian
a, x 
n
, c
l (x,  )  x   (aT x  c )
2
1
  x l (x,  )  f (x)  aT  2xT  aT  0  x   a
2
1
2
Substitute in the constraint equation  aT x    a  c
2
 x* 
ca
a
2
f ( x* ) 
and
2
c2 a
a

4
c2
a
2
3-) One-dimensional discrete-time system
x(k  1)   ( x(k ), u (k ), k )
x(0)  x0
Optimal control with terminal constraint
N
minimize
u
J   ( x( k ), u ( k ), k )
k 0
subject to
g  x( N  1)   0
where
u  u (0) u (1)
u ( N )
T


2c
a
2
z  [ x(1),
Let
=[x1 ,
, x( N ), x( N  1), u (0),
, u( N )]T
, u N ]T
, xN 1 , u0 ,
The constraint equations are:
h1 (z )   ( x0 , u0 ,0)  x1
hN 1 (z )   ( xN , u N , N )  xN 1
hN  2 (z )  g  x( N  1) 
Applying the first order necessary condition for constrained optimization:
N 2
 z J   k 1 z hk  0
(1)
k 1
where
 
z J  
 x1

xN 1

 z hk = 0


xk 1

 z hk = 0

Writing (1) explicitly gives,
k -1 = k
0


+k
0
uk
uk
N = N 1
and for k  N  1,
1
0
0

uk 1

0

k  1,..., N

0 0

g
xN 1
 
+
xk xk
 

u N 

u0
k  1,..., N
k  0,..., N
g
xN 1
Hence, the optimal control problem has a solution if there exist Lagrange multipliers
{k , k  1,..., N  1} which satisfy the above equations.
Example:
x(k  1)   x(k )  u (k )
N
J   (u (k ))  k
x(0)  F
0   1
k 0
x( N  1)  0

 ,
xk

 1,
uk

 0,
xk
g
1
xN 1
 k -1 = k
k  1,..., N
N = N 1
 k
  k
(2)
k  0,..., N
uk
Suppose  (u )  u1/ 2
(1)


1
 1/ 2  kk
uk 2uk


(3)
Eqns. (1), (2) are used to solve for the  's. Then uk 's are solved from (3).
4-)
minimize f (x)  x
subject to aT x  c, and bT x  d
2
x

g1 (x)  aT x  c  0,
a, b , x 
n
, c, d 
g 2 ( x)  bT x  d  0
KKT conditions 
f (x)  1g1 ( x)  2g 2 ( x)  0
(1)
1 (a x  c)  0
(2)
2 (bT x  d )  0
1  0
2  0
(3)
T
f ( x )  2 xT
In (1)
g1 ( x)  aT
g 2 ( x )  b T
2x  1a   2b  0
(1) 

x0
 a x  0,
T
b x0
This solution is feasible if c, d  0.
T
CASE 2 : Assume now that both constraints are active
1
1
(1)  x   1a  2 b
2
2
1
1
2

aT x   1 a  2aT b  c
2
2
1
1
2
and bT x   1bT a   2 b  d
2
2
Solution of (4), (5)
2c b  2daT b
2
1 
a
2
b  (aT b) 2
2
1  0 2  0

CASE 1 : Assume that both constraints are inactive

1  0  2  0
(4)
(5)
2d a  2caT b
2
2 
a
2
b  (aT b) 2
2
This solution is feasible if 1  0  daT b  c b
2
and
2  0  caT b  d a
Also, denominator in 1 and 2 must be greater than zero.  aT b  a b .
2
 1  0, 2  0
CASE 3 : (2) active, (3) inactive

1
1
2c
2
x   1a  aT x   1 a  c  1  2
2
2
a
1
cbT a
 bT x   1bT a 
d
2
2
a
 Feasible if cbT a  d a
1
1
2
x    2 b  bT x    2 b  d
2
2
 2 
1
daT b
 aT x    2 a T b 
c
2
2
b
2d
b
2
 Feasible if d  0.
 Feasible if daT b  c b
5-)
maximize
V ( x)  x1 x2 x3
subject to
2 x1  2 x2  4 x3  a
and
x1  0, x2  0,
x3  0

minimize f ( x)   x1 x2 x3
The constraint functions:
subject to the same constraints
g1 (x)   x1
g 2 (x)   x2
g3 (x)   x3
g 4 (x)  2 x1  2 x2  4 x3  a
The KKT conditions
2
 1  0, 2  0
CASE 4 : (2) inactive, (3) active

 Feasible if c  0.

4
f ( x )    i  g i ( x )  0
i 1
1 x1  0, 2 x2  0, 3 x3  0
1 , 2 , 3 , 4  0
2
The gradients of the functions:
f ( x)    x2 x3
 x1 x3
 x1 x2 
g1 (x)   1 0 0 g 2 ( x)  0 1 0  g 3 ( x)  0 0
 KKT :
 x2 x3  1  2 4  0
(1)
 x1 x3  2  2 4  0
(2)
 x1 x2  3  4  4  0
(3)
1 x1  0
2 x2  0
3 x3  0
4 (2 x1  2 x2  4 x3  a )  0
 1
(4)
(5)
(6)
(7)
It is in general difficult to solve the equations and determine which constraints are active and which are not.
And there is no general rule. An intuitive solution:
Solving 1 , 2 , 3 from (1),(2) and (3) and substituting in (4), (5), (6) gives
x1 (  x2 x3  24 )  0
(8)
x2 (  x1 x3  24 )  0
(9)
x3 (  x1 x2  44 )  0
(10)
Adding eqns. (8),(9),(10)
(2 x1  2 x2  4 x3 ) 4  3 x1 x2 x3
a  4  3 x1 x2 x3
Using (7),
Substituting  4 in (8),(9),(10) gives the solution for x1 , x2 , x3 as
a
a
x1  x2  , x3 
6
12
The Lagrange multipliers are:
1  2  3  0,
4 =
a2
144

4 
3 x1 x2 x3
a
Related documents