Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Publicly verifiable authenticated encryption IEEE Electronics Letters, Vol. 39, No 19, pp. 13821383, 18th Sep. 2003 Authors: Hsiang-An, Chein-Min Lo and Tzonelih Hwang Speaker: Pen-Yi Chang, 2004/10/13 Source: 1 Outline Introduction Review of MA-Chen Scheme Verification problem of the TTP in the Ma-Chen scheme Conclusions 2 Introduction Ma-Chen have proposed an authenticated encryption scheme with public verifiability. Ma-Chen scheme, which the TTP can verify the sender’s signature. How- ever we will point out the verification problem of the TTP in the Ma-Chen scheme. This problem causes the TTP to reject a valid signature with non-negligible probability. 3 Review of MA-Chen Scheme(1/3) Notations: p, q: large prime number with q|(p-1) g: generator of order q H: public one way hash function xa, xb: secret key of Alice and Bob ya, yb: public key of Alice and Bob m:message k: random number 4 Review of MA-Chen Scheme(2/3) Alice picks a random number k Alice Bob (c, r , s ) v ( g yB ) k mod p e v mod q v ( g yB ) s y Ar ( xB 1) mod p c m ( H (v))1 mod p m c H (v) mod p r H (e, H (m)) r H (e, H (m)) s k xA r mod q 5 Review of MA-Chen Scheme(3/3) For public verification: rx k s Bob computes K1 ( yB mod p) mod q ( yB y A B mod p) mod q Bob TTP ( H (m), K1 , r, s) e ' ( g s y Ar K1 mod p) mod q r H (e ', H (m)) 6 Problem in TTP verification(1/5) The reconstructed e’ by the TTP does not always equal the original e computed in the signature of the sender Lemma 1: p, q: two prime number such that p kq 1 a, b: natural numbers. Let s b(mod p mod q) Then the probability that ab(mod p mod q) as(mod p mod q) k 1 is 1 p 7 Problem in TTP verification(2/5) Proof: Let b np r and r n ' q s ,so b np n ' q s and ab anp an ' q as Let c an ' q(mod p mod q) . Then ab(mod p mod q ) anp an ' q as (mod p mod q ) 0 c as(mod p mod q ) If c 0(mod p mod q) then, ab(mod p mod q) as(mod p mod q) 8 Problem in TTP verification(3/5) If c 0(mod p mod q) then ab(mod p mod q) as(mod p mod q) The probability that ab as(mod p mod q) is equivalent to the probability that an ' q 0 Without loss of generality, assume that an ' q(mod p) is uniformly distributed in Zp .Thus, the probability that an ' q 0(mod p mod q) is (k+1)/p Therefore, probability that ab as(mod p mod q) =probability that an ' q 0(mod p mod q) =1-(k+1)/p 9 Problem in TTP verification(4/5) TTP e ' ( g s y Ar K1 ) mod p mod q ( g k K1 ) mod p mod q K1 ( yBs y Ar xB ) mod p mod q yBk mod p mod q Alice e ( g k yBk ) mod p mod q By Lemma 1 (ab g k(mod yBk ) mod p mod ( g k Kp1mod ) modq)p mod q p mod q) qas(mod k 1 probability is 1 p 10 Problem in TTP verification(5/5) Example Let p=23, q=11, g=2, k=10 yB 16 mod 23 , K1 1610 2 mod 23mod11 e (g∙yB)kmod p mod q e’ (gk∙K1)mod p mod q (2∙16)10mod 23 mod 11 7 (210∙2)mod 23 mod 11 1 e e' 11 Conclusions The inequality between computing e in signing phase and public verification causes the TTP to reject a valid signature with nonnegligible probability. The TTP will reject a valid signature with probability 1 – (k+1)/p. 12