Download Publicly verifiable authenticated encryption

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Publicly verifiable
authenticated encryption
IEEE Electronics Letters,
Vol. 39, No 19, pp. 13821383, 18th Sep. 2003
Authors: Hsiang-An, Chein-Min Lo
and Tzonelih Hwang
Speaker: Pen-Yi Chang, 2004/10/13
Source:
1
Outline
 Introduction
 Review of MA-Chen Scheme
 Verification problem of the TTP in the
Ma-Chen scheme
 Conclusions
2
Introduction
 Ma-Chen have proposed an authenticated
encryption scheme with public verifiability.
 Ma-Chen scheme, which the TTP can verify
the sender’s signature. How- ever we will
point out the verification problem of the
TTP in the Ma-Chen scheme. This problem
causes the TTP to reject a valid signature
with non-negligible probability.
3
Review of MA-Chen Scheme(1/3)
 Notations:
p, q: large prime number with q|(p-1)
g: generator of order q
H: public one way hash function
xa, xb: secret key of Alice and Bob
ya, yb: public key of Alice and Bob
m:message
k: random number
4
Review of MA-Chen Scheme(2/3)
Alice picks a random number k
Alice
Bob
(c, r , s )
v  ( g  yB ) k mod p
e  v mod q
v  ( g  yB ) s  y Ar ( xB 1) mod p
c  m  ( H (v))1 mod p
m  c  H (v) mod p
r  H (e, H (m))
r  H (e, H (m))
s  k  xA  r mod q
5
Review of MA-Chen Scheme(3/3)
For public verification:
rx
k
s
Bob computes K1  ( yB mod p) mod q  ( yB  y A B mod p) mod q
Bob
TTP
( H (m), K1 , r, s)
e '  ( g s  y Ar  K1 mod p) mod q
r  H (e ', H (m))
6
Problem in TTP verification(1/5)
 The reconstructed e’ by the TTP does not
always equal the original e computed in the
signature of the sender
 Lemma 1:
p, q: two prime number such that p  kq  1
a, b: natural numbers.
Let s  b(mod p mod q)
Then the probability that
ab(mod p mod q)  as(mod p mod q)
k 1
is 1 
p
7
Problem in TTP verification(2/5)
 Proof:
Let b  np  r and r  n ' q  s ,so
b  np  n ' q  s and ab  anp  an ' q  as
Let c  an ' q(mod p mod q) . Then
ab(mod p mod q )  anp  an ' q  as (mod p mod q )
 0  c  as(mod p mod q )
 If c  0(mod p mod q) then,
ab(mod p mod q)  as(mod p mod q)
8
Problem in TTP verification(3/5)
If c  0(mod p mod q) then
ab(mod p mod q)  as(mod p mod q)
 The probability that ab  as(mod p mod q) is
equivalent to the probability that an ' q  0
 Without loss of generality, assume that an ' q(mod p)
is uniformly distributed in Zp .Thus, the
probability that an ' q  0(mod p mod q) is
(k+1)/p
Therefore, probability that ab  as(mod p mod q)
=probability that an ' q  0(mod p mod q)
=1-(k+1)/p
9
Problem in TTP verification(4/5)
 TTP
e '  ( g s  y Ar  K1 ) mod p mod q  ( g k  K1 ) mod p mod q
K1  ( yBs  y Ar xB ) mod p mod q  yBk mod p mod q
 Alice
e  ( g k  yBk ) mod p mod q
 By Lemma 1
(ab
g k(mod
 yBk ) mod
p mod
( g k  Kp1mod
) modq)p mod q
p mod
q) qas(mod
k 1
probability is 1 
p
10
Problem in TTP verification(5/5)
 Example
Let p=23, q=11, g=2, k=10
yB  16 mod 23
,
K1  1610  2 mod 23mod11
e  (g∙yB)kmod p mod q
e’  (gk∙K1)mod p mod q
(2∙16)10mod 23 mod 11 7
(210∙2)mod 23 mod 11 1
e  e'
11
Conclusions
 The inequality between computing e in
signing phase and public verification causes
the TTP to reject a valid signature with nonnegligible probability.
 The TTP will reject a valid signature with
probability 1 – (k+1)/p.
12
Related documents