Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
2.1-2.2 Review β Calculus
Honors Precalculus β Meinke
Name: ______________________________
No Calculator
Definition: π(π₯) = πππ‘π₯ is called the βgreatest integer functionβ. It is also called the βrounding down
functionβ.
Examples: πππ‘2 = _____
5
πππ‘ 2 = _____
5
1
πππ‘(β 2) = _____
πππ‘ 2 = _____
Evaluate the following limits.
Direct substitution:
1.) lim 2
π₯β3
4.) lim
3.) lim 3β2π₯
5.) lim πππ‘(βπ₯ β 0.5)
6.) lim [πππ‘(π₯ + 1) β πππ‘π₯ 2 ]
π₯β5β
π₯ 2 +4
π₯ββ2 π₯β2
6π₯β1
2.) lim ππ₯
π₯ββ3
π₯β0
π₯β3β
Algebraic Simplification, Then Substitution:
7.) lim
π₯ 2 β4
8.) lim
π₯β2 π₯β2
10.) lim
π₯ββπ
2π₯ 2 βπ₯β15
π₯β3
π₯ 2 +2ππ₯+π2
π₯+π
π₯β3
π₯ 2 β2π₯
11.) lim π₯ 2 +π₯β6
π₯β2
9.) lim
π₯+7
π₯ββ7+ π₯ 2 β49
12.) lim
π ππ5π₯
π₯β0 2π₯
Limits at Infinity:
β5
13.) lim
π₯ββ
14.) lim
π₯2
π₯ββ
15.) lim
π₯βββ 5
6π₯ 3 +4π₯
16.) lim
π₯2
βπ₯ 3 β4π₯ 2 +5
19.) lim π‘πππ₯
π₯βββ
π₯ββ
π₯ 5 β1
17.) lim
π₯βββ 66π₯ 2 +π₯β1
20.) lim
π₯ββ
1
1+π βπ₯
2π₯ 3 +π₯ 2 +2
π₯ 4 β75
18.) lim π πππ₯
π₯ββ
21.) lim
1
π₯βββ 1+π βπ₯
β1, π₯ < 0
Definition: π πππ₯ = { 0, π₯ = 0
1, π₯ > 0
22.) lim
π₯2
π₯βββ π πππ₯
23.) lim 2π πππ₯
π₯ββ
24.) lim
π₯3
π₯βββ π πππ₯
Limits at V.A:
25.) lim
π₯ 2 +4
π₯β2 π₯β2
π₯ 2 β4
28.) lim (π₯β2)3
π₯β2
π₯ 2 +4
26.) lim (π₯β2)2
π₯β2
4βπ₯ 2
29.) lim (π₯β2)3
π₯β2
27.) lim
π₯ 2 +4
π₯ββ2 π₯+2
π₯ 2 β4
30.) lim (π₯β2)2
π₯β2
1
1
31.) lim (π₯ β π₯ 2 )
π₯β0+
β1
32.) lim
π₯β2β 2βπ₯
1
33.) lim (π₯β3)2
π₯β3
Other Limits:
34.) lim πππ‘π₯
35.) lim πππ‘π₯
π₯β4
37.) lim
π₯β4.5
|π₯|
38.) lim
π₯β0 π₯
|π₯|
36.) lim πππ‘π₯
π₯ββ4
39.) lim
π₯β0β π₯
|π₯|
π₯β0+ π₯
Definition: If lim π(π₯) = πΏ and/or lim π(π₯) = π, where L and M are finite, then π(π₯) has a H.A. at
π₯ββ
π₯βββ
π¦ = πΏ and/or π¦ = π.
Find the horizontal asymptote(s).
40.) π¦ =
1
π₯
1+πππ ( )
1
1+
π₯
1
43.) π¦ = 1+π π₯
41.) π¦ =
44.) π¦ =
2π₯+π πππ₯
π₯
β3π₯+1
2π₯+2
π πππ₯
42.) π¦ = 2π₯ 2 +π₯
45.) π¦ = π πππ₯
46.) Let π(π₯) = {
βπ₯ 2 β 1, π₯ < 1
.
π₯ β 1, π₯ β₯ 1
Find the following:
π. ) lim π(π₯)
π₯β1β
b.) lim π(π₯)
c.) lim π(π₯)
π₯β1+
π₯β1
47.) Given the graph of g(x) below, find the following:
a.) lim π(π₯)
π₯β0
b.) lim π(π₯)
π₯ββ
c.) lim π(π₯)
π₯βββ
d.) lim π(π₯)
π₯β1+
48.) Sketch a function p(x) with the following conditions:
a.) p(x) has a limit at x = -2.
b.) p(-2) is undefined.
c.) lim π(π₯) = 2
π₯ββ
d.) lim π(π₯) = 2
π₯βββ
e.) lim π(π₯) = 1
π₯β1β
f.) lim π(π₯) = 3
π₯β1+
g.) p(1) = -1
h.) lim π(π₯) = ββ
π₯ββ1
Find the right and left-end behavior models.
49.) π(π₯) = βπ βπ₯ + π₯ 8
50.) π(π₯) = π₯ + π πππ₯