Download University of Kansas Math526: Probability and Statistics Instructor

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
University of Kansas
Instructor: Le Chen
Math526: Probability and Statistics
Class 4172-52503 (2017 Spring)
Homework of Weeks 4 & 5
Due on Feb. 21
3.38. It is helpful to fill the table first.
fX,Y px, yq x “ 0
1
2
3
fY pyq
y“0
0
30
1
30
2
30
3
30
6
30
1
1
30
2
30
3
30
4
30
10
30
2
2
30
3
30
4
30
5
30
14
30
fX pxq
3
30
6
30
9
30
12
30
1
Table 1: The joint distribution function for Ex. 3.38.
(a) P pX ď 2, Y “ 1q “ fX,Y p0, 1q ` fX,Y p1, 1q ` fX,Y p2, 1q “
(b) P pX ą 2, Y ď 1q “ fX,Y p3, 0q ` fX,Y p3, 1q “
3`4
30
“
1`2`3
30
“ 51 .
7
.
30
(c)
P pX ą Y q “ fX,Y p1, 0q ` fX,Y p2, 0q ` fX,Y p3, 0q ` fX,Y p2, 1q ` fX,Y p3, 1q ` fX,Y p3, 2q
1`2`3`3`4`5
“
30
3
“ .
5
(d)P pX ` Y “ 4q “ fX,Y p2, 2q ` fX,Y p3, 1q “
1
4`4
30
“
4
.
15
3.44. (a)
ż 50
ż 50
dx
30
ż 50
2
2
dypx ` y q “
30
ˆ
dx
30
ż 50
“
“
“
“
˙ˇy“50
y 3 ˇˇ
x y`
3 ˇy“30
2
ˆ
503 ´ 303
dx x p50 ´ 30q `
3
30
ˆ 3
˙ˇ50
x
503 ´ 303 ˇˇ
p50 ´ 30q ` x
ˇ
3
3
30
˘
2` 3
50 ´ 303 p50 ´ 30q
3
3920000
.
3
(1)
˙
2
(2)
(3)
(4)
(5)
Hence,
k“
3
.
3920000
(b) By similar calculation as those in (a),
ż 40
P p30 ă X ă 40, 40 ă Y ă 50q “
ż 50
dx
30
dy
40
3
px2 ` y 2 q
3920000
1
“ .
4
(6)
(7)
(c) By similar calculation as those in (a),
ż 40
ż 40
30
“
dy
dx
P p30 ă X ă 40, 30 ă Y ă 40q “
30
3
px2 ` y 2 q
3920000
37
.
196
(8)
(9)
3.49. (a) The marginal distribution of X is
x
fX pxq
1
0.1
2
0.35
3
0.55
3
0.5
5
0.3
(b) The marginal distribution of Y is
y
1
fY pyq 0.2
(d)
P pY “ 3|X “ 2q “
P pY “ 3, X “ 2q
0.1
2
“
“ .
P pX “ 2q
0.35
7
3.56. Note that the domain
0 ă x ă 1,
0ăy ă1´x
(10)
0 ă y ă 1,
0 ă x ă 1 ´ y,
(11)
can be equivalently written as
which is clear from the graph below.
2
y
1
x
o
1
(a) To show that X and Y are not independent, we need to calculate their marginal
distribution functions: If x P p0, 1q, then
ż 1´x
6xdy
(12)
fX pxq “
0
“ 6xp1 ´ xq.
(13)
If x R p0, 1q, then fX pxq “ 0. Hence,
#
6xp1 ´ xq if x P p0, 1q,
fX pxq “
0
otherwise.
(14)
Similarly, if y P p0, 1q, then
ż 1´y
fY pyq “
6xdx
(15)
“ 3p1 ´ yq2 .
(16)
0
If y R p0, 1q, then fY pyq “ 0. Hence,
#
3p1 ´ yq2
fY pyq “
0
if y P p0, 1q,
otherwise.
(17)
Therefore, X and Y are not independent because
fX,Y px, yq ‰ fX pxqfY pyq.
(b) To calculate the conditional probability, we need to find the conditional distribution
function first. For x and y in the right domain (i.e., x and y satisfy the conditions (10)),
fX,Y px, yq
fY pyq
2x
“
.
p1 ´ yq2
fX px|Y “ yq “
(18)
(19)
Hence, if y P p0, 1q,
2x
fX px|Y “ yq “ p1 ´ yq2
%
0
$
&
3
if 0 ă x ă 1 ´ y,
otherwise.
(20)
Therefore, for y P p0, 1q,
ż `8
fX px|Y “ yqdx
P pX ą 0.3|Y “ yq “
(21)
ż0.3
1´y
2x
dx
2
0.3 p1 ´ yq
ˇx“1´y
x2 ˇˇ
“
p1 ´ yq2 ˇ
“
(22)
(23)
x“0.3
“1´
0.09
.
p1 ´ yq2
(24)
In particular, if y “ 0.5, we have
P pX ą 0.3|Y “ 0.5q “ 1 ´
0.09
16
“ .
2
p1 ´ 0.5q
25
4.2. We first calculate all the probability distribution function
ˆ ˙ ˆ ˙0 ˆ ˙3
3
1
3
33
f p0q “
“ 1 ˆ 1 ˆ 3,
0
4
4
4
ˆ ˙ ˆ ˙1 ˆ ˙2
3!
3
1
3
1 32
33
f p1q “
“
ˆ ˆ 2 “ 3,
1
4
4
2!1! 4 4
4
ˆ ˙ ˆ ˙2 ˆ ˙1
1
3
32
3
3!
3
1
ˆ 2 ˆ “ 3,
f p2q “
“
4
4
1!2! 4
4
4
2
ˆ ˙ ˆ ˙3 ˆ ˙0
1
3
3
3!
1
1
f p3q “
“
ˆ 3 ˆ 1 “ 3.
3
4
4
3!0! 4
4
Therefore,
EpXq “ f p0q ˆ 0 ` f p1q ˆ 1 ` f p2q ˆ 2 ` f p3q ˆ 3 “
0 ˆ 33 ` 33 ` 2 ˆ 32 ` 3
3
“ .
3
4
4
4.4. Suppose the probability of tail is p, then the probability of head is 3p. Because
p ` 3p “ 1, we see that p “ 1{4. The sample space is
S “ tpH, Hq, pH, T q, pT, Hq, pT, T qu.
Let X be the number of tails in the two tosses. The two tosses are independent. Hence,
ˆ ˙2
3
fX p0q “ P pX “ 0q “ P ptpH, Hquq “
,
4
fX p1q “ P pX “ 1q “ P ptpT, Hq, pH, T quq “ P ptpT, Hquq ` P ptpH, T quq
1 3 3 1
3
“ ˆ ` ˆ “
4 4 4 4
8
ˆ ˙2
1
fX p2q “ P pX “ 2q “ P ptpT, T quq “ P ptpT, T quq “
.
4
4
Therefore,
ˆ ˙2
ˆ ˙2
3
3
1
1
EpXq “ 0 ˆ
`1ˆ `2ˆ
“ .
4
8
4
2
4.12.
ż8
xf pxqdx
EpXq “
´8
ż1
2xp1 ´ xqdx
ˆ
˙ˇx“1
ˇ
2
1
“ x2 ´ x ˇˇ
“ .
3
3
x“0
“
0
Hence, the average profit per automobile is 5000{3 « 1667 USD.
4.17.
µgpXq “ EpgpXqq “ gp´3qf p´3q ` gp6qf p6q ` gp9qf p9q
1
1
1
“ 25 ˆ ` 169 ˆ ` 361 ˆ “ 209.
6
2
3
4.23. (a)
EpXY 2 q “
ÿ
ÿ
xy 2 f px, yq
x“2,4 y“1,3,5
2
“2 ˆ 1 ˆ 0.10 ` 2 ˆ 32 ˆ 0.20 ` 2 ˆ 52 ˆ 0.10
4 ˆ 12 ˆ 0.15 ` 4 ˆ 32 ˆ 0.30 ` 4 ˆ 52 ˆ 0.15
“35.20.
(b)The marginal law of X and Y are
x
2
fX pxq 0.4
4
0.6
and
y
1
fY pyq 0.25
3
0.5
5
0.25
Hence,
µX “ 2 ˆ 0.4 ` 4 ˆ 0.6 “ 3.2
and
µY “ 1 ˆ 0.25 ` 3 ˆ 0.5 ` 5 ˆ 0.25 “ 3.
5
4.26.
ż1
ż1
dy 4xy
dx
EpZq “
a
x2 ` y 2
ż01
ż01
a
dpx2 ` y 2 q 2x x2 ` y 2
0
0
ˇy“1
ż1
1
px2 ` y 2 q 2 `1 ˇˇ
“
dx 2x
ˇ
ˇ
1 ` 12
0
y“0
ż1
2 32
3
p1 ` x q ´ x
dx 4x
“
3
0
ż1
ż1 4
2 32
4x
2 2p1 ` x q
dp1 ` x q
“
´
dx
3
3
0
0
ˇ1
ˇ1
3
4x5 ˇˇ
2p1 ` x2 q 2 `1 ˇˇ
“
ˇ ´
3 ˆ 5 ˇ0
3p1 ` 32 q ˇ
dx
“
0
9{2
4
´4
´
15
15
29{2 ´ 8
“
.
15
“
2
4.30.
ż8
xf pxqdx
(25)
x ´x{4
e
dx
4
(26)
ErXs “
ż´8
8
“
0
ż8
xde´x{4
“´
(27)
0
ż8
ˇx“8
“ ´xe
´
e´x{4 dp´xq
ˇ
x“0
0
ż8
“0´0`
e´x{4 dx
0
ˇx“8
ˇ
“ ´4e´x{4 ˇ
“ ´p0 ´ 4q “ 4.
´x{4 ˇ
(Integration by parts)
x“0
4.34. We first find the mean of X
µX “ ´2 ˆ 0.3 ` 3 ˆ 0.2 ` 5 ˆ 0.5 “ 2.5.
Then we calculate
EpX 2 q “ p´2q2 ˆ 0.3 ` 32 ˆ 0.2 ` 52 ˆ 0.5 “ 15.5.
Hence, the variance of X is equal to
2
σX
“ EpX 2 q ´ µ2X “ 9.25.
6
(28)
(29)
Finally,
σX “
?
9.25 “ 3.041.
4.57.
1
1
1
11
`6ˆ `9ˆ “ ,
6
2
3
2
1
1
1
93
ErX 2 s “ p´3q2 ˆ ` 62 ˆ ` 92 ˆ “ ,
6
2
3
2
ErXs “ p´3q ˆ
(30)
(31)
Therefore,
Erp2X ` 1q2 s “ Er4X 2 ` 4X ` 1s
“ 4ErX 2 s ` 4ErXs ` 1
93
11
“4ˆ
`4ˆ
` 1 “ 209.
2
2
4.62. Because X and Y are independent, σXY “ 0. Hence,
2
σZ2 “ p´2q2 σX
` 42 σY2 ` 2 ˆ p´2q ˆ 4 ˆ σXY “ 4 ˆ 5 ` 16 ˆ 3 ` 0 “ 68.
4.63.
2
σZ2 “ p´2q2 σX
` 42 σY2 ` 2 ˆ p´2q ˆ 4 ˆ σXY “ 4 ˆ 5 ` 16 ˆ 3 ´ 16 “ 52.
7
(32)
(33)
(34)
Related documents