Download Lecture # 13

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Lecture 08
Higher Order Equations-Preliminary Theory
Higher Order Linear Differential Equations
Preliminary theory

A differential equation of the form
a n ( x)
dny
dx n
 an 1 ( x)
d n 1 y
dx n 1
   a1 ( x)
dy
 a0 ( x) y  g ( x)
dx
a n ( x) y ( n)  a n 1 ( x) y ( n 1)    a1 ( x) y   a0 ( x) y  g ( x)
where a0 ( x), a1 ( x),, an ( x), g ( x) are functions of x and a n ( x)  0 , is
called a linear differential equation with variable coefficients.
However, we shall first study the differential equations with constant coefficients
i.e. equations of the type
or

an
dny
dx n
 an 1
d n 1 y
dx n 1
   a1
dy
 a 0 y  g ( x)
dx
where a0 , a1 ,, a n are real constants. This equation is non-homogeneous
differential equation and
If g ( x )  0 then the differential equation becomes

dny
d n 1 y
dy
 a0 y  0
dx
dx
dx
which is known as the associated homogeneous differential equation.
an
n
 an 1
n 1
   a1
Initial -Value Problem
For a linear nth-order differential equation, the problem:
Solve: an ( x)
Subject to:
dny
n
 an 1 ( x)
dx
y ( x0 )  y 0 ,
d n 1 y
n 1
   a1 ( x)
dy
 a0 ( x) y  g ( x)
dx
dx
y / ( x0 )  y 0/ ,......... y n1 ( x0 )  y0n1
y0 , y0 ,, y0n1 being arbitrary constants, is called an initial-value problem (IVP).
/
/
/
n 1
The specified values y( x0 )  y0 , y ( x0 )  y 0 ,, y ( x0 )  y 0
n 1
are called initial-
conditions.
For n  2 the initial-value problem reduces to
Solve:
Subject to:
a 2 ( x)
d2y
 a1 ( x)
dy
 a0 ( x) y  g ( x)
dx
dx 2
y( x0 )  y0 , …, y / ( x 0 )  y 0/
1
Lecture 08
Higher Order Equations-Preliminary Theory
Solution of IVP
A function satisfying the differential equation on I whose graph passes through ( x0 , y0 )
such that the slope of the curve at the point is the number y 0/ is called solution of the
initial value problem.
Theorem: Existence and Uniqueness of Solutions
Let an ( x), an 1 ( x),..., a1 ( x), a0 ( x) and g (x ) be continuous on an interval I and let
an ( x)  0,  x  I . If x  x0  I , then a solution y (x) of the initial-value problem exist
on I and is unique.
Example 1
2 x
y  3e  e
 3x
Consider the function
This is a solution to the following initial value problem
y //  4 y  12 x, y (0)  4, y / (0)  1
2x
d2y
Since
dx 2
d2y
and
2
 12e 2 x  4e 2 x
 4 y  12e 2 x  4e 2 x  12e 2 x  4e 2 x  12 x  12 x
dx
y (0)  3  1  0  4 and
Further
y  (0)  6  2  3  1
2 x
y  3e  e  3x
Hence
is a solution of the initial value problem.
2x
We observe that




The equation is linear differential equation.
The coefficients being constant are continuous.
The function g ( x)  12 x being polynomial is continuous.
The leading coefficient a2 ( x)  1  0 for all values of x.
Hence the function y  3e 2 x  e 2 x  3x is the unique solution.
Example 2
Consider the initial-value problem
3 y ///  5 y //  y /  7 y  0,
y (1)  0, y / (1)  0, y // (1)  0
Clearly the problem possesses the trivial solution y  0 .
2
Lecture 08
Since




Hence
Higher Order Equations-Preliminary Theory
The equation is homogeneous linear differential equation.
The coefficients of the equation are constants.
Being constant the coefficient are continuous.
The leading coefficient a3  3  0 .
y  0 is the only solution of the initial value problem.
Note: If a n  0 ?
If an ( x)  0 in the differential equation
a n ( x)
dny
dx
n
 an1 ( x)
d n1 y
dx
n1
   a1 ( x)
dy
 a 0 ( x ) y  g ( x)
dx
for some x  I then


Solution of initial-value problem may not be unique.
Solution of initial-value problem may not even exist.
Example 4
Consider the function
y  cx 2  x  3
and the initial-value problem
Then
Therefore
x 2 y //  2 xy/  2 y  6
y (0)  3,
y / (0)  1
y   2cx  1 and
y   2c
x 2 y //  2 xy /  2 y  x 2 (2c)  2 x(2cx  1)  2(cx 2  x  3)
 2cx 2  4cx 2  2 x  2cx 2  2 x  6
 6.
y (0)  3  c(0)  0  3  3
Also
and
y / (0)  1  2c(0)  1  1
So that for any choice of c , the function ' y ' satisfies the differential equation and the
initial conditions. Hence the solution of the initial value problem is not unique.
Note that


The equation is linear differential equation.
The coefficients being polynomials are continuous everywhere.
3
Lecture 08
Higher Order Equations-Preliminary Theory

The function g (x ) being constant is constant everywhere.

The leading coefficient a2 ( x)  x 2  0 at x  0  (, ) .
Hence a2 ( x)  0 brought non-uniqueness in the solution.
Boundary-value problem (BVP)
For a 2nd order linear differential equation, the problem
d2y
dy
Solve:
a 2 ( x) 2  a1 ( x)  a0 ( x) y  g ( x)
dx
dx
Subject to:
y (a)  y 0 ,
y(b)  y1
is called a boundary-value problem. The specified values y (a)  y 0 , and y(b)  y1 are
called boundary conditions.
Solution of BVP
A solution of the boundary value problem is a function satisfying the differential equation
on some interval I , containing a and b , whose graph passes through two points (a, y 0 )
and (b, y1 ) .
Example 5
Consider the function
y  3x 2  6 x  3
We can prove that this function is a solution of the boundary-value problem
x 2 y //  2 xy /  2 y  6,
y (1)  0,
y (2)  3
dy
d2y
 6 x  6,
6
dx
dx 2
d2y
dy
Therefore
x 2 2  2 x  2 y  6 x 2  12 x 2  12 x  6 x 2  12 x  6  6
dx
dx
y (1)  3  6  3  0, y (2)  12  12  3  3
Also
Therefore, the function ' y ' satisfies both the differential equation and the boundary
conditions. Hence y is a solution of the boundary value problem.
.
Possible Boundary Conditions
For a 2nd order linear non-homogeneous differential equation
d2y
dy
a 2 ( x) 2  a1 ( x)  a0 ( x) y  g ( x)
dx
dx
Since
4
Lecture 08
Higher Order Equations-Preliminary Theory
all the possible pairs of boundary conditions are
y (a)  y 0 ,
y(b)  y1 ,
y / (a )  y 0/ ,
y(b)  y1,
y (a)  y 0 ,
y / (b)  y /1 ,
y / (a )  y 0/ ,
y / (b)  y1/
where y 0 , y 0/ , y1 and y1/ denote the arbitrary constants.
In General
All the four pairs of conditions mentioned above are just special cases of the general
boundary conditions
1 y(a)  1 y / (a)   1
 2 y(b)   2 y / (b)   2
1 , 2 , 1 ,  2  0,1
where
Note that
A boundary value problem may have



Several solutions.
A unique solution, or
No solution at all.
Example 1
Consider the function
y  c1 cos 4x  c2 sin 4x
and the boundary value problem
y //  16 y  0,
y(0)  0, y( / 2)  0
Then
y /  4c1 sin 4 x  4c 2 cos 4 x
y //  16(c1 cos 4 x  c 2 sin 4 x)
y //  16 y
y //  16 y  0
Therefore, the function
y  c1 cos 4 x  c2 sin 4x
satisfies the differential equation
y //  16 y  0 .
Now apply the boundary conditions
y (0)  0
Applying
We obtain
0  c1 cos 0  c2 sin 0
 c1  0
So that
y  c2 sin 4x .
5
Lecture 08
Higher Order Equations-Preliminary Theory
But when we apply the 2nd condition y ( / 2)  0 , we have
0  c2 sin 2
Since sin 2  0 , the condition is satisfied for any choice of c2 , solution of the problem is
the one-parameter family of functions
y  c2 sin 4x
Hence, there are an infinite number of solutions of the boundary value problem.
Example 2
Solve the boundary value problem
y //  16 y  0
 
y (0)  0, y    0,
8
Solution:
As verified in the previous example that the function
y  c1 cos 4x  c2 sin 4x
satisfies the differential equation
y //  16 y  0
We now apply the boundary conditions
y(0)  0  0  c1  0
and
y( / 8)  0  0  0  c2
So that
c1  0  c2
Hence
y0
is the only solution of the boundary-value problem.
Example 3
Solve the differential equation
y //  16 y  0
subject to the boundary conditions
y (0)  0, y ( / 2)  1
Solution:
As verified in an earlier example that the function
y  c1 cos 4x  c2 sin 4x
satisfies the differential equation
y //  16 y  0
We now apply the boundary conditions
y(0)  0  0  c1  0
6
Lecture 08
Therefore
So that
However
Higher Order Equations-Preliminary Theory
c1  0
y  c2 sin 4 x
y ( / 2)  1  c2 sin 2  1
1  c2 .0  1  0
or
This is a clear contradiction. Therefore, the boundary value problem has no solution.
Definition: Linear Dependence
A set of functions
 f1 ( x), f 2 ( x),, f n ( x)
is said to be linearly dependent on an interval I if  constants c1 , c2 ,, cn not all zero,
such that
c1 f1 ( x)  c2 f 2 ( x)  .  cn f n ( x)  0,
 xI
Definition: Linear Independence
A set of functions
 f1 ( x), f 2 ( x),, f n ( x)
is said to be linearly independent on an interval I if
c1 f1 ( x)  c2 f 2 ( x)    cn f n ( x)  0,
 xI ,
only when
c1  c2    cn  0.
Case of two functions:
If n  2 then the set of functions becomes
 f1 ( x), f 2 ( x)
If we suppose that
c1 f1 ( x)  c2 f 2 ( x)  0
Also that the functions are linearly dependent on an interval I then either c1  0 or
c2  0 .
Let us assume that c1  0 , then
f1 ( x)  
c2
f 2 ( x) ;
c1
7
Lecture 08
Higher Order Equations-Preliminary Theory
Hence f1 ( x) is the constant multiple of f 2 ( x) .
Conversely, if we suppose
f1 ( x)  c 2 f 2 ( x)
(1) f1 ( x)  c2 f 2 ( x)  0 , x  I
Then
So that the functions are linearly dependent because c1  1 .
Hence, we conclude that:

Any two functions f1 ( x) and f 2 ( x) are linearly dependent on an interval I if and
only if one is the constant multiple of the other.

Any two functions are linearly independent when neither is a constant multiple of
the other on an interval I.

In general a set of n functions  f1 ( x), f 2 ( x), , f n ( x) is linearly dependent if at
least one of them can be expressed as a linear combination of the remaining.
Example 1
The functions
f1 ( x)  sin 2x,
x  (, )
f 2 ( x)  sin x cos x, x  (, )
If we choose c1 
1
and c2  1 then
2
c1 sin 2 x  c 2 sin x cos x 
1
2 sin x cos x   sin x cos x  0
2
Hence, the two functions f1 ( x) and f 2 ( x) are linearly dependent.
Example 3
Consider the functions
f1 ( x)  cos2 x , f 2 ( x)  sin 2 x,  x  ( / 2,  / 2) ,
f 3 ( x)  sec 2 x , f 4 ( x)  tan 2 x,  x  ( / 2,  / 2)
If we choose c1  c2  1, c 3  1, c 4  1, then
c1 f1 ( x)  c 2 f 2 ( x)  c3 f 3 ( x)  c 4 f 4 ( x)
 c1 cos 2 x  c 2 sin 2 x  c3 sec 2 x  c 4 tan 2 x
 cos 2 x  sin 2 x  1  tan 2 x  tan 2 x
 11 0  0
8
Lecture 08
Higher Order Equations-Preliminary Theory
Therefore, the given functions are linearly dependent.
Note that
The function f 3 ( x) can be written as a linear combination of other three functions
f1 ( x), f 2 x and f 4 ( x) because sec 2 x  cos 2 x  sin 2 x  tan 2 x .
Example 3
Consider the functions
f1 ( x)  1  x,  x  (, )
f 2 ( x )  x,
 x  (, )
f 3 ( x)  x 2 ,  x  (, )
Then
c1 f1 ( x)  c2 f 2 ( x)  c3 f 3 ( x)  0
means that
or
c1 (1  x)  c2 x  c3 x 2
0
c1  (c1  c2 ) x  c3 x 2
0
Equating coefficients of x and x 2 constant terms we obtain
c1  0  c3
c1  c2  0
c1  c2  c3  0
Therefore
Hence, the three functions f1 ( x), f 2 ( x) and f 3 ( x) are linearly independent.
Definition: Wronskian
Suppose that the function f1 ( x), f 2 ( x), , f n ( x) possesses at least n  1 derivatives then
the determinant
f1
f 2 
fn
f1/

f 2/ 

f n/

f1n 1
f 2n 1 
f nn 1
is called Wronskian of the functions
W  f1 ( x), f1 ( x),, f1 ( x) .
f1 ( x), f 2 ( x), , f n ( x) and is denoted by
Theorem: Criterion for Linearly Independent Functions
Suppose the functions f1 ( x), f 2 ( x), , f n ( x) possess at least n-1 derivatives on an
interval I . If
9
Lecture 08
Higher Order Equations-Preliminary Theory
W ( f1 ( x), f 2 ( x), , f n ( x))  0
for at least one point in I , then functions f1 ( x), f 2 ( x), , f n ( x) are linearly independent
on the interval I .
Note that
This is only a sufficient condition for linear independence of a set of functions.
In other words
If f1 ( x), f 2 ( x), , f n ( x) possesses at least n  1 derivatives on an interval and are
linearly dependent on I , then
W ( f1 ( x), f 2 ( x), , f n ( x))  0,
x  I
However, the converse is not true. i.e. a Vanishing Wronskian does not guarantee linear
dependence of functions.
Example 1
The functions
f1 x   sin 2 x
f 2 x   1  cos 2 x
are linearly dependent because
sin 2 x 
1
(1  cos 2 x)
2
We observe that for all x  (, )
W  f1 x , f 2 x  
sin 2 x
1  cos 2 x
2 sin x cos x
2 sin 2 x
 2 sin 2 x sin 2 x  2 sin x cos x
 2 sin x cos x cos 2 x
 sin 2 x [2 sin 2 x  1  cos 2 x]
 sin 2 x [2 sin 2 x  1  cos 2 x  sin 2 x]
 sin 2 x [sin 2 x  cos 2 x  1]
0
Example 2
Consider the functions
10
Lecture 08
Higher Order Equations-Preliminary Theory
f1  x   e
m1x
m x
, f 2 x   e 2 ,
m1  m2
The functions are linearly independent because
c1 f1 ( x)  c2 f 2 ( x)  0
if and only if
c1  0  c2
as
m1  m2
Now for all x  R

We
m1 x
,e
m2 x

e m1 x
e m2 x
m1e m1 x
m2 e m2 x
 m2  m1 e m1  m2 x
0
Thus f1 and f 2 are linearly independent of any interval on x-axis.
Example 3
If  and  are real numbers,   0 , then the functions
y1  ex cos x and y 2  ex sin x
are linearly independent on any interval of the x-axis because

W ex cos x, ex sin x


ex cos x
ex sin x
 ex sin x  ex cos x ex cos x  ex sin x


 e 2x cos 2 x  sin 2 x  e 2x  0.
Example 4
The functions
f1 x   e x , f 2 x   xe x , and f 3 x   x 2 e x
are linearly independent on any interval of the x-axis because for all x  R , we have
11
Lecture 08
Higher Order Equations-Preliminary Theory
xe x
x 2e x
W e x , xe x , x 2 e x  e x
xe x  e x
x 2 e x  2 xe x
ex
xe x  2e x
x 2 e x  4 xe x  2e x

ex

 2e 3 x  0
Practice Exercise
1. Given that
y  c1e x  c2 e  x
is a two-parameter family of solutions of the differential equation
y   y  0
on  , , find a member of the family satisfying the boundary conditions
y0  0, y1  1 .
2. Given that
y  c1  c2 cos x  c3 sin x
is a three-parameter family of solutions of the differential equation
y   y   0
on the interval  , , find a member of the family satisfying the initial
conditions y   0, y   2, y   1 .
3. Given that
y  c1 x  c2 x ln x
is a two-parameter family of solutions of the differential equation
x 2 y  xy  y  0 on  , . Find a member of the family satisfying the initial
conditions
y1  3, y1  1.
Determine whether the functions in problems 4-7 are linearly independent or
dependent on  , .
4.
5.
6.
f 1  x   x,
f 2 x   x 2 ,
f 3 x   4 x  3x 2
f1 x   0, f 2 x   x, f 3  x   e x
f1 x   cos 2 x, f 2 x   1, f 3 x   cos 2 x
7. f1 x   e x , f 2 x   e  x , f 3 x   sinh x
Show by computing the Wronskian that the given functions are linearly independent
on the indicated interval.
12
Lecture 08
Higher Order Equations-Preliminary Theory
- , 
9. e , e , e ;  ,  
10. x, x ln x, x 2 ln x; 0,  
8. tan x, cot x;
x
-x
4x
13
Related documents