Download Introduction of Math Vocabulary

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Grades 9–11
Language Development for Success
BOOK 1
Basic Terms, Angles, Proofs,
Lines and Transversals, Triangles
Sealaska Heritage Institute
The contents of this program were developed by Sealaska Heritage Institute through the support of a Special Projects
'HPRQVWUDWLRQ*UDQWIURPWKH86'HSDUWPHQWRI(GXFDWLRQ2I¿FHRI,QGLDQ(GXFDWLRQ&)'$$+RZHYHUWKHFRQWHQWV
do not necessarily represent the policy of the Department of Education and you should not assume endorsement.
2009
Integrating Culturally
Responsive, Place-Based
Content with Language Skills
Development for Curriculum
Enrichment
DEVELOPED BY
Stephanie Hoage
Steve Morley
Jim MacDiarmid
Unit Assessments
Bev Williams
LAYOUT & FORMATTING
Matt Knutson
PRINTERS
Capital Copy, Juneau, Alaska
PROJECT ASSISTANT
Tiffany LaRue
2009
Table of Contents
BOOK 1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Developmental Language Process . . . . . . . . . . . . . 7
Math and the Developmental Language Process . . . . . 9
Unit 1—Basic Terms . . . . . . . . . . . . . . . . . . . . . . . . . . 11
8QLW²$QJOHV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8QLW²3URRIV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8QLW²/LQHV7UDQVYHUVDOV . . . . . . . . . . . . . . . . . . . 8QLW²7ULDQJOHV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
INTRODUCTION
2YHUWKH\HDUVPXFKKDVEHHQZULWWHQDERXWWKHVXFFHVVHVDQGIDLOXUHVRIVWXGHQWVLQ
VFKRROV7KHUHLVQRHQGWRWKHVROXWLRQVRIIHUHGSDUWLFXODUO\IRUWKRVHVWXGHQWVZKRDUH
struggling with academics. There have been efforts to bring local cultures into the classURRPWKXVSURYLGLQJWKHVWXGHQWVZLWKIDPLOLDUSRLQWVRIGHSDUWXUHIRUOHDUQLQJ+RZHYHU
most often such instruction has been limited to segregated activities such as arts and
crafts or Native dancing rather than integrating Native culture into the overall learning
SURFHVV 7ZR FRUH FXOWXUDO YDOXHV Haa Aaní, WKH UHIHUHQFH IRU DQG XVDJH RI WKH ODQG
and Haa Shagóon, WKHW\LQJRIWKHSUHVHQWZLWKWKHSDVWDQGIXWXUH are known by both
VWXGHQWVDQGSDUHQWVDQGFDQEHLQFOXGHGLQDFXUULFXOXPWKDWVLPXOWDQHRXVO\SURYLGHV
DEDVLVIRUVHOILGHQWLW\DQGFXOWXUDOSULGHZLWKLQWKHHGXFDWLRQDOVHWWLQJ7KLVZLOOSURYLGH
a valuable foundation for improved academic achievement.
:KLOHWKHLQFOXVLRQRI1DWLYHFRQFHSWVYDOXHVDQGWUDGLWLRQVLQWRDFXUULFXOXPSURYLGHVD
YDOXDEOHIRXQGDWLRQIRUVHOILGHQWLW\DQGFXOWXUDOSULGHLWPD\QRWRQLWVRZQIXOO\DGGUHVV
improved academic achievement.
7KLVSURJUDPLVGHVLJQHGWRPHHWWKHDFDGHPLFUHDOLWLHVIDFHGE\KLJKVFKRROVWXGHQWV
HYHU\GD\XVLQJDGHYHORSPHQWDOSURFHVVWKDWLQWHJUDWHVculture with skills development.
The values of Haa Aaní and Haa Shagóon are reinforced through the various activities in
the program.
'XULQJ PDWK OHVVRQV VWXGHQWV DUH H[SRVHG WR PDWKLQIRUPDWLRQ DQG WRNH\ YRFDEXODU\
WKDWUHSUHVHQWWKDWLQIRUPDWLRQ:KLOHWKHVWXGHQWVPD\DFTXLUHWKURXJKYDULRXVSURFHVVHVWKHPDWKHPDWLFDOLQIRUPDWLRQWKHYRFDEXODU\LVRIWHQOHIWDWDQH[SRVXUHOHYHODQGLV
QRWLQWHUQDOL]HGE\WKHP2YHUWLPHWKLVOHDGVWRlanguage-delay that impacts negatively
on a student’s on-going academic achievement.
Due to language delayPDQ\1DWLYH$ODVNDQKLJKVFKRROVWXGHQWVVWUXJJOHZLWKWH[WVWKDW
are beyond their comprehension levels and writing assignments that call for language
WKH\GRQRWKDYH7RWKLVHQGLQWKLVUHVRXUFHSURJUDPHDFKNH\YRFDEXODU\ZRUGLQPDWK
is viewed as a concept7KHZRUGVDUHLQWURGXFHGFRQFUHWHO\XVLQJSODFHEDVHGLQIRUPDWLRQDQGFRQWH[WV8VLQJWKLVDSSURDFKWKHVWXGHQWVKDYHWKHRSSRUWXQLW\WRDFTXLUHQHZ
information in manageable chunks; the sum total of which represent the body of information to be learned in the math program. In many high school math classes it is assumed
WKDWWKHDFDGHPLFYRFDEXODU\LVEHLQJLQWHUQDOL]HGGXULQJWKHOHDUQLQJSURFHVVZKLFKLV
most often an erroneous assumption.
—
5 —
:KHQ WKH NH\ YRFDEXODU\FRQFHSWV KDYH EHHQ LQWURGXFHG WKH VWXGHQWV DUH WKHQ WDNHQ
WKURXJK D VHTXHQFH RI OLVWHQLQJ VSHDNLQJ UHDGLQJ DQG ZULWLQJ DFWLYLWLHV GHVLJQHG WR
instill the vocabulary into their long term memories - see the Developmental Language
ProcessZKLFKIROORZV
It should be understood that these materials are not a curriculum UDWKHU WKH\ DUH
resource materials designed to encourage academic achievement through intensive
language development in the content areas.These resource materials are culturally
responsive in that they utilize teaching and learning styles effective with Native students.
$VWKHVWXGHQWVSURJUHVVWKURXJKWKHVWHSVRIWKH3URFHVVWKH\PRYHIURPDFRQFUHWH
LQWURGXFWLRQ RIWKH NH\ YRFDEXODU\ WRD V\PEROLF UHSUHVHQWDWLRQ RIWKH YRFDEXODU\ DQG
¿QDOO\WRWKHLUDEVWUDFWIRUPVUHDGLQJDQGZULWLQJ7KLVSURYLGHVDIRUPDWIRUWKHVWXGHQWV
to develop language and skills that ultimately lead to improved academic performance.
The Integration of Place-Based,
Culturally Responsive Math Content
and Language Development
Introduction of
Key Math Vocabulary
Math, Vocabulary
Development
Listening, speaking, reading & writing
Math Application
Reinforcement Activities
—
6 —
The Developmental Language Process
7KH'HYHORSPHQWDO/DQJXDJH3URFHVV'/3LVGHVLJQHGWRLQVWLOOODQJXDJHLQWRORQJ
term memory. The origin of the Process is rooted in the struggles faced by languageGHOD\HGVWXGHQWVSDUWLFXODUO\ZKHQWKH\¿UVWHQWHUVFKRRO
7KH3URFHVVWDNHVWKHVWXGHQWVFKLOGUHQWKURXJKGHYHORSPHQWDOVWHSVWKDWUHÀHFWWKH
QDWXUDODFTXLVLWLRQRIODQJXDJHLQWKHKRPHDQGFRPPXQLW\,QLWLDOO\RQFHNH\ODQJXDJH
LWHPVKDYHEHHQLQWURGXFHGFRQFUHWHO\WRWKHVWXGHQWVWKHYRFDEXODU\DUHXVHGLQWKH
¿UVWRIWKHODQJXDJHVNLOOV%DVLF/LVWHQLQJ7KLVVWDJHLQWKHSURFHVVUHSUHVHQWVinput
DQGLVDFULWLFDOYHQXHIRUODQJXDJHDFTXLVLWLRQDQGUHWHQWLRQ$EDE\KHDUVPDQ\GLIIHUHQWWKLQJVLQWKHKRPHJUDGXDOO\WKHEDE\EHJLQVWRlistenWRZKDWKHVKHKHDUV$V
a result of the inputSURYLGHGWKURXJK%DVLF/LVWHQLQJWKHEDE\WULHVWRUHSHDWVRPHRI
WKHODQJXDJHKHDUG±WKLVLVUHSUHVHQWHGE\WKHVHFRQGSKDVHRIWKH3URFHVV%DVLF
Speaking - the oral output stage of language acquisition.
$VPRUHODQJXDJHJRHVLQWRDFKLOG¶VORQJWHUPPHPRU\KHVKHEHJLQVWRXQGHUVWDQG
simple commands and phrases. This is a higher level of listening represented by the
VWDJH/LVWHQLQJ&RPSUHKHQVLRQ:LWKWKHLQFUHDVHLQYRFDEXODU\DQGVHQWHQFHGHYHORSPHQWWKHFKLOGEHJLQVWRH[SORUHWKHXVHRIODQJXDJHWKURXJKWKHQH[WVWDJHLQ
WKH3URFHVV&UHDWLYH6SHDNLQJ$OORIWKHVHVWHSVLQWKH3URFHVVUHÀHFWWKHQDWXUDO
sequence of language development.
The listening and speaking skill areas represent trueODQJXDJHVNLOOVPRVWFXOWXUHV
LQFOXGLQJ$ODVND1DWLYHFXOWXUHVQHYHUZHQWEH\RQGWKHPWRGHYHORSZULWWHQIRUPV2UDO
traditions are inherent in the listening and speaking skills.
+RZHYHU(QJOLVKGRHVKDYHDEVWUDFWIRUPVRIODQJXDJHLQUHDGLQJDQGZULWLQJ0DQ\
Native children entering kindergarten come from homes where language is used differently than in classic Western homes. This is not a value judgment of child rearing pracWLFHVEXWDGH¿QLWHFURVVFXOWXUDOUHDOLW\7KHUHIRUHLWLVFULWLFDOWKDWWKH1DWLYHFKLOGEH
introduced to the concepts of reading and writing before ever dealing with them as skills
areas. It is vital for the children to understand that reading and writing are talk in print.
The Developmental Language Process integrates the real language skills of listening
DQGVSHDNLQJZLWKWKHUHODWHGVNLOOVRIUHDGLQJDQGZULWLQJ$WWKLVVWDJHLQWKH3URFHVV
WKHVWXGHQWVDUHLQWURGXFHGWRWKHSULQWHGZRUGVIRUWKH¿UVWWLPH7KHVHDEVWUDFWUHSUHVHQWDWLRQVDUHQRZIDPLOLDUWKURXJKWKHOLVWHQLQJDQGVSHDNLQJDFWLYLWLHVDQGWKHUHODWLRQVKLSLVIRUPHGEHWZHHQWKHZRUGVDQGODQJXDJHEHJLQQLQJZLWK%DVLF5HDGLQJ
$VPRUHODQJXDJHJRHVLQWRWKHFKLOGUHQ¶VORQJWHUPPHPRULHVWKH\EHJLQWRFRPSUHKHQGPRUHRIZKDWWKH\UHDGLQ5HDGLQJ&RPSUHKHQVLRQ
—
7 —
0DQ\$ODVNDQVFKRRODWWLFVDUH¿OOHGZLWKUHDGLQJSURJUDPVWKDWGLGQ¶WZRUN±LQUHDOLW\
any of the programs would have worked had they been implemented through a lanJXDJHGHYHORSPHQWSURFHVV)RUPDQ\1DWLYHFKLOGUHQWKHSULQWHGZRUGFUHDWHVDQJVW
SDUWLFXODUO\LIWKH\DUHVWUXJJOLQJZLWKWKHUHDGLQJSURFHVV2IWHQFKLOGUHQDUHDVNHGWR
read language they have never heard.
1H[WLQWKH3URFHVVLV%DVLF:ULWLQJZKHUHWKHVWXGHQWVDUHDVNHGWRZULWHWKHNH\
ZRUGV)LQDOO\WKHPRVWGLI¿FXOWRIDOOWKHODQJXDJHVNLOOV&UHDWLYH:ULWLQJKDVWKHVWXGHQWVZULWLQJVHQWHQFHVRIWKHLURZQXVLQJWKHNH\ZRUGVDQGODQJXDJHIURPWKHLUORQJ
term memories. This high level skill area calls upon the students to not only retrieve
ODQJXDJHEXWWRSXWWKHZRUGVLQWKHLUFRUUHFWRUGHUZLWKLQWKHVHQWHQFHVWRVSHOOWKH
words correctly and to sequence their thoughts in the narrative.
The Developmental Language Process is represented in this chart:
$WWKHHQGRIWKH3URFHVVWKHVWXGHQWVSDUWLFLSDWHLQHQULFKPHQWDFWLYLWLHVEDVHGRQ
recognized and reasearch-based best practices. By this time the information and vocabXODU\ZLOOEHIDPLOLDUDGGLQJWRWKHVWXGHQWV¶IHHOLQJVRIFRQ¿GHQFHDQGVXFFHVV
7KH8QLW¶V$VVHVVPHQWLVDOVRDGPLQLVWHUHGGXULQJWKH([WHQVLRQ$FWLYLWLHVVHFWLRQRI
the Process. This test provides the teacher with a clear indication of the students’ progUHVVEDVHGRQWKHREMHFWLYHVIRUEDVLFOLVWHQLQJEDVLFUHDGLQJUHDGLQJFRPSUHKHQVLRQ
basic writing and creative writing.
Since the DLP is a processDQGQRWDSURJUDPLWFDQEHLPSOHPHQWHGZLWKDQ\PDWHULDOVDQGDWDQ\JUDGHRUUHDGLQHVVOHYHO$VWXGHQW¶VDELOLW\WRFRPSUHKHQGZHOOLQlistening and readingDQGWREHFUHDWLYHO\H[SUHVVLYHLQspeaking and writingLVGHSHQGHQW
upon how much language he/she has in long-term memory.
—
8 —
Math & The Developmental Language Process
The Developmental Language Process can be applied effectively in the development of math
concepts and their vocabulary. Not all math vocabulary lend themselves well to listening comSUHKHQVLRQFUHDWLYHVSHDNLQJDQGFUHDWLYHZULWLQJDFWLYLWLHVDQGWKHUHIRUHWKH3URFHVVFDQEH
adapted to create a fast track in math. This schema represents the use of the Process in math:
$FWLYLWLHVIRUOLVWHQLQJFRPSUHKHQVLRQFUHDWLYHVSHDNLQJDQGFUHDWLYHZULWLQJFDQEHXVHG
depending upon the vocabulary being developed.
7KLVUHVRXUFHERRNLVGHVLJQHGWREHXVHGDSSUR[LPDWHO\RQFHSHUPRQWKIRUDVL[W\WRQLQHW\
PLQXWHOHVVRQ'XULQJWKLVWLPHWKHGHYHORSPHQWRImath vocabulary is the principle endeavRUQRWWKHWHDFKLQJRIWKHPDWKFRQFHSWV+RZHYHUWKHPDWKFRQFHSWVIRUPWKHEDVHVIRUODQguage development.
Increased vocabulary development in math will ultimately lead to improved academic achievePHQWLQFUHDVHGVHOIHVWHHPDQGWRDKLJKHUVXFFHVVUDWHRQDFDGHPLFDVVHVVPHQWV
—
9 —
—
10 —
UNIT 1
Basic Terms
Sealaska Heritage Institute
Grade Level Expectations for Unit 1
Unit 1 Basic Terms
Alaska State Mathematics Standard C
$VWXGHQWVKRXOGXQGHUVWDQGDQGEHDEOHWRIRUPDQGXVHDSSURSULDWHPHWKRGVWR
GH¿QHDQGH[SODLQPDWKHPDWLFDOUHODWLRQVKLSV
$VWXGHQWZKRPHHWVWKHFRQWHQWVWDQGDUGVKRXOG
&H[SUHVVDQGUHSUHVHQWPDWKHPDWLFDOLGHDVXVLQJRUDODQGZULWWHQ
SUHVHQWDWLRQVSK\VLFDOPDWHULDOVSLFWXUHVJUDSKVFKDUWVDQGDOJHEUDLF
H[SUHVVLRQV
&UHODWHPDWKHPDWLFDOWHUPVWRHYHU\GD\ODQJXDJH
GLEs
The student communicates his or her mathematical thinking by
>@36UHSUHVHQWLQJPDWKHPDWLFDOSUREOHPVQXPHULFDOO\JUDSKLFDOO\DQG
RUV\PEROLFDOO\WUDQVODWLQJDPRQJWKHVHDOWHUQDWLYHUHSUHVHQWDWLRQVRUXVLQJ
DSSURSULDWHYRFDEXODU\V\PEROVRUWHFKQRORJ\WRH[SODLQMXVWLI\DQGGHIHQG
strategies and solutions
>@36UHSUHVHQWLQJPDWKHPDWLFDOSUREOHPVQXPHULFDOO\JUDSKLFDOO\DQG
RUV\PEROLFDOO\FRPPXQLFDWLQJPDWKLGHDVLQZULWLQJRUXVLQJDSSURSULDWH
YRFDEXODU\V\PEROVRUWHFKQRORJ\WRH[SODLQMXVWLI\DQGGHIHQGVWUDWHJLHVDQG
solutions
Vocabulary
& Definitions
Introduction of Math Vocabulary
Infinite
,Q¿QLWHPHDQVXQOLPLWHGRUXQHQGLQJ:KHQVRPHWKLQJLV
LQ¿QLWHLWFDQQRWEHPHDVXUHGRUFRXQWHG,WJRHVRQIRUHYHU6SDFHDVVKRZQLQWKHSKRWRLVLQ¿QLWHLWKDVQR
ERXQGDULHV7LPHVDQGQXPEHUVDUHDOVRLQ¿QLWH
Dimension
'LPHQVLRQVDUHGLUHFWLRQVRIH[WHQVLRQ/HQJWKZLGWKDQGKHLJKWDUHGLPHQVLRQV$VWUHWFKHGVWULQJPRGHOVDOLQHZKLFKKDVRQH
GLPHQVLRQOHQJWK$ZDOORUÀRRUPRGHOVDSODQHZKLFK
KDVWZRGLPHQVLRQVOHQJWKDQGZLGWK6SDFHDER[RUD
KRXVHKDVWKUHHGLPHQVLRQVOHQJWKZLGWKDQGKHLJKW,Q
WKLVSKRWRRIDORQJKDOOZD\\RXFDQVHHRQHGLPHQVLRQDO
WZRGLPHQVLRQDODQGWKUHHGLPHQVLRQDOREMHFWVUHSUHVHQWHG/LQHVDQGSODQHVKDYHQRWKLFNQHVVEXWLQWKH
UHDOZRUOGDQ\PRGHORIDOLQHRUDSODQHKDVVRPHWKLFNness. We say that telephone wires or lines on the pavement
model or representRQHGLPHQVLRQDOREMHFWVDQGWKDWWKHLFHRQDSRQGmodels a two-dimensional object.
Space
6SDFHLVWKHVHWRIDOOSRLQWV,WLVWKHGLPHQVLRQDOSODFH
LQZKLFKDQREMHFWFDQH[LVWRUHYHQWVFDQWDNHSODFH
6SDFHLVLQ¿QLWH:HFDQ¶WPHDVXUHDOORIVSDFHDQGZH
FDQ¶WPHDVXUHWKHLQ¿QLWHQXPEHURISRLQWVLQDQ\JLYHQ
VSDFH:HXVHFXELFFHQWLPHWHUVFXELFIHHWFXELFPHWHUV
or other measures for the amounts of space contained in
LQVLGHRIMDUVURRPVRURWKHUERXQGDULHV
—
17 —
Introduction of Math Vocabulary
Point
$SRLQWLVDSRVLWLRQLQVSDFH,WKDVQRVL]HDQGQRGLPHQVLRQVDQGLVLQ¿QLWHO\
VPDOO$GRWFDQEHXVHGWRUHSUHVHQWDSRLQWEXWDSRLQW
is smaller than the smallest dot you can make. The picture
shows the symbol that is used by Google Maps to indicate
a point.
Some other models of points might be the very tip of a
SHQFLORUWKHFRUQHURIDER[
Line
$OLQHLVWKHVWUDLJKWSDWKWKDWFRQQHFWVWZRSRLQWVDQGJRHVRQIRUHYHUEH\RQG
WKHSRLQWVLQERWKGLUHFWLRQV,WLVPDGHXSRILQ¿QLWHO\PDQ\SRLQWVLQDVWUDLJKW
DUUDQJHPHQW$OLQHKDVQRWKLFNQHVVLWKDVRQHGLPHQVLRQ
7KH\HOORZOLQHVLQWKHSKRWRPLJKWKHOSWRJLYHXVDPHQWDOSLFWXUHRIDOLQH
even though in reality they do have thickness and they
don’t really go on forever!
The symbol for line has an arrow on each end. Segment
$VHJPHQWLVDSLHFHRUVHFWLRQRIDOLQH,WKDVWZRHQGSRLQWV
and contains all the points in between. It can be measured.
This is a picture of a line segment with
HQGSRLQWV$DQG%,WLVFDOOHGVHJPHQW$%RUVHJPHQW%$
7KHHGJHVRIWKHER[LQWKHSKRWRDUHOLQHVHJPHQWV2WKHU
WKLQJVLQRXUHQYLURQPHQWWKDWUHSUHVHQWOLQHVHJPHQWVDUHSROHV
ZLUHVDQGHGJHVRIEXLOGLQJV
—
18 —
Introduction of Math Vocabulary
Midpoint
$PLGSRLQWLVWKHSRLQWLQWKHPLGGOHRIDOLQHVHJPHQW,W
divides a line segment in half.
,QWKHSKRWR\RXFDQVHHDVHJPHQWUHSUHVHQWHGE\WKH
KRUL]RQWDOSROHRQWKH¿VKUDFN7KHPLGSRLQWLVORFDWHG
where the center support comes in contact with that pole.
Collinear
&ROOLQHDUPHDQV³RQWKHVDPHOLQH´&ROOLQHDUSRLQWVDUHWKUHHRUPRUHSRLQWV
WKDWOLHRQWKHVDPHOLQH,I\RXRQO\KDYHWZRSRLQWVWKHUHLVDOZD\VRQHOLQH
WKDWFDQFRQWDLQWKHPERWK
3RLQWV$%DQG&DUHFROOLQHDU
3RLQWV$%DQG&DUHQRWFROOLQHDU
,QWKHSKRWRWKHWZRERDWVDQGWKHEXR\DUHDOOLQDVWUDLJKW
OLQHVRWKH\DUHFROOLQHDU
—
19 —
Introduction of Math Vocabulary
Intersect
/LQHVOLQHVHJPHQWVUD\VDQGRWKHU¿JXUHVDUHVDLGWR
LQWHUVHFWLIWKH\PHHWRULQRWKHUZRUGVLIWKH\VKDUHD
common point. That point is called the point of intersection.
,QWKHSKRWRWKHFURVVLQJRIWKHWZRURSHVRUOLQHVUHSUHVHQWVDQLQWHUVHFWLRQ
<RXFDQ¿QGLQWHUVHFWLRQVUHSUHVHQWHGDWURDGFURVVLQJVRQ¿VKQHWVRQIHQFHV
and many other locations.
,QWKHSLFWXUHEHORZ6HJPHQW$%LQWHUVHFWVVHJPHQW23DWSRLQW&
Ray
$UD\LVKDOIDOLQHRUSDUWRIDOLQHWKDWKDVDVWDUWLQJSRLQW
DQGH[WHQGVLQ¿QLWHO\LQRQHGLUHFWLRQ7KLQNRIWKHVXQ¶VUD\V
– they start at the sun but do not end.
$UD\LVUHSUHVHQWHGE\DQDUURZWKDWJRHVLQRQHGLUHFWLRQ
7KLVLVDSLFWXUHRIUD\$%
,QWKHSLFWXUH\RXFDQVHHWKHVXQ¶VUD\V
)ODVKOLJKWEHDPVDQGVHDUFKOLJKWVDOVRUHSUHVHQW
rays.
—
20 —
Introduction of Math Vocabulary
Angle
$QDQJOHLVPDGHXSRIWZRUD\VZLWKDFRPPRQVWDUWLQJSRLQW:HDOVRWKLQNRI
DQDQJOHDVWKHDPRXQWRI³WXUQLQJ´RUVSDFHEHWZHHQWKHWZR
UD\V$QJOHVDUHPHDVXUHGLQGHJUHHVRUUDGLDQV7KLVLVWKH
symbol for angle.
The picture shows a representation of an angle drawn on
WKHSDYHPHQW7KHKDQGVRIDFORFNDOVRIRUPDQJOHV
and angles can be seen commonly on buildings and
other structures.
Congruent
&RQJUXHQWPHDQVH[DFWO\HTXDOLQVL]HDQGVKDSH/LQHVHJPHQWV
FDQEHFRQJUXHQWDQGVRFDQWZRGLPHQVLRQDODQGWKUHHGLPHQVLRQDO¿JXUHVDQGREMHFWV
This is the symbol for congruent:
The chairs in the picture are congruent since they have the
same size and shape. Other congruent objects around you
PLJKWEHVKHHWVRIQRWHERRNSDSHURUWH[WERRNV
—
21 —
Introduction of Math Vocabulary
Plane
$SODQHLVDÀDWVXUIDFHH[WHQGLQJLQ¿QLWHO\LQDOOGLUHFWLRQV,WLVWZRGLPHQVLRQDOLWKDVOHQJWKDQGZLGWKEXWQRWKLFNQHVV5RRIVZDOOVFHLOLQJVDQGIUR]HQ
SRQGVDUHDOOPRGHOVRISODQHVEXWDSODQHLVWKLQQHUWKDQDQ\WKLQJ\RXFRXOG
WRXFKRUVHHDQGLWJRHVRQIRUHYHU
7KHÀRRUVKRZQLQWKHSLFWXUHUHSUHVHQWVDSODQHVXUIDFH
Coplanar
&RSODQDUPHDQV³RQWKHVDPHSODQH´:KHQSRLQWVOLQHVRU¿JXUHVDUHFRSODQDULWPHDQVWKH\DUHRQWKHVDPHSODQH
&RSODQDU3RLQWV
1RW&RSODQDU3RLQWV
$%&DQG'DUHFRSODQDU
$%DQG&DUHQRWFRSODQDU
—
22 —
Introduction of Math Vocabulary
7KHWLOHVRQWKHÀRRULQWKHSKRWRDUHFRSODQDUDQGDOORIWKHOLQHVDQGSRLQWV
represented by their edges and intersections are coplanar.
2WKHUH[DPSOHVWKDWUHSUHVHQWFRSODQDUREMHFWVPLJKWEHSLFWXUHVRQDZDOORU
windows on the side of a building.
Parallel lines
3DUDOOHOOLQHVDUHOLQHVWKDWDUHRQWKHVDPHSODQHFRSODQDUEXWWKDWGRQRW
intersect. You can think of them as going in the same direction and staying the
same distance apart.
The wires in the photo represent parallel lines. Other common representations
PLJKWEHWKHHGJHVRIWKHERDUGVDORQJDERDUGZDONRUWKHRSSRVLWHHGJHVRID
sheet of paper.
Parallel Lines:
Not Parallel Lines:
—
23 —
—
24 —
Language and Skills
Development
Using the Math Vocabulary Terms
Language & Skills Development
LISTENING
Use the activity pages
from the Student
Support Materials.
SPEAKING
READING
Use the activity pages
from the Student
Support Materials.
WRITING
Use the activity pages
from the Student
Support Materials.
Illustration Bingo
Provide each student with a copy of the mini-illustration activity page from the
student support materials. The students should cut out the illustrations. Each
VWXGHQWVKRXOGWXUQKLVKHULOOXVWUDWLRQVIDFHGRZQRQWKHGHVN7KHQHDFKVWX
GHQWVKRXOGWXUQ21(LOOXVWUDWLRQIDFHXS6D\DYRFDEXODU\ZRUG$Q\VWXGHQW
or students who have the illustration for the vocabulary word you said face up
RQWKHLUGHVNVVKRXOGVKRZWKHLULOOXVWUDWLRQV7KRVHLOOXVWUDWLRQVVKRXOGWKHQ
be put to the side and the students should turn over another illustration. The
¿UVWVWXGHQWRUVWXGHQWVWRKDYHQRLOOXVWUDWLRQVOHIWRQWKHLUGHVNVZLQWKH
URXQG7KHLOOXVWUDWLRQVPD\EHFROOHFWHGPL[HGDQGUHGLVWULEXWHGWRWKHVWXdents for the different rounds of the activity.
One to Six
3URYLGHHDFKVWXGHQWZLWKWZREODQNÀDVKFDUGV(DFKVWXGHQWVKRXOGWKHQZULWH
DQXPEHURQHDFKRIKLVÀDVKFDUGVEHWZHHQRQHDQGVL[RQHQXPEHUSHUFDUG
:KHQWKHVWXGHQWV¶QXPEHUFDUGVDUHUHDG\WRVVWZRGLFHDQGFDOOWKHQXPEHUV
VKRZLQJ$Q\VWXGHQWRUVWXGHQWVZKRKDYHWKRVHWZRQXPEHUVPXVWWKHQLGHQ
WLI\ D YRFDEXODU\ LOOXVWUDWLRQ \RX VKRZ 7KH VWXGHQWV PD\ H[FKDQJH QXPEHU
cards periodically during this activity.
Right or Wrong
Mount the sight words on the chalkboard. Point to one of the sight words and
QDPH LW 7KH VWXGHQWV VKRXOG UHSHDW WKH VLJKW ZRUG +RZHYHU ZKHQ \RX SRLQW
WRDVLJKWZRUGDQGVD\WKHZURQJZRUGIRULWWKHVWXGHQWVVKRXOGUHPDLQVLOHQW
5HSHDW WKLV SURFHVV XQWLO WKH VWXGHQWV KDYH UHVSRQGHG DFFXUDWHO\ WR DOO RI WKH
sight words a number of times.
Mirror Writing
*URXSWKHVWXGHQWVLQWRWZRWHDPV+DYHWKH¿UVWSOD\HUIURPHDFKWHDPVWDQG
LQ IURQW RI WKH FKDONERDUG *LYH HDFK RI WKH WZR SOD\HUV D VPDOO XQEUHDNDEOH
mirror. Stand some distance behind the two players with illustrations for the
VLJKW ZRUGV +ROG XS RQH RI WKH LOOXVWUDWLRQV :KHQ \RX VD\ ³*R´ WKH SOD\HUV
with the mirrors must look over their shoulders to see the illustration you are
KROGLQJ:KHQDSOD\HUVHHVWKHLOOXVWUDWLRQKHVKHPXVWZULWHWKHVLJKWZRUGIRU
WKDWLOOXVWUDWLRQRQWKHFKDONERDUG7KH¿UVWSOD\HUWRGRWKLVFRUUHFWO\ZLQVWKH
URXQG5HSHDWWKLVSURFHVVXQWLODOOSOD\HUVLQHDFKWHDPKDYHKDDQRSSRUWXQLW\
to respond.
—
27 —
Student Support
Materials
—
31 —
—
33 —
—
35 —
—
37 —
—
39 —
—
41 —
—
43 —
—
45 —
—
47 —
—
49 —
—
51 —
—
53 —
—
55 —
—
57 —
—
59 —
—
60 —
True-False Sentences
(Listening and/or Reading Comprehension)
1. $QLQ¿QLWH number cannot be measured.
2. 7KHÀRRURIDKRXVHKDVWZRdimensions.
The spaceLQDER[FDQQRWEHPHDVXUHG
$point has no dimensions.
$line can be curved.
$OLQHsegment has two dimensions.
7. $VHJPHQWLVGLYLGHGLQKDOIE\LWVmidpoint.
)RXUSRLQWVWKDWDUHRQWKHVDPHOLQHDUHcollinear.
9. Two lines can intersect in only one point.
10. $ray can be curved.
11. $Qangle is made up of two rays.
12. Two objects that are the same shape are congruent.
$plane LVLQ¿QLWHLQRQO\WZRGLUHFWLRQV
Two lines are always coplanar.
Lines that meet in a common point are parallel.
$QVZHUV77)7))777)7))))
1. There are an LQ¿QLWHQXPEHURIWUHHVLQWKH7RQJDVV1DWLRQDO)RUHVW
2. $ER[KDVRQHdimension.
$KRFNH\SXFNH[LVWVLQspace.
$point is always round.
$line goes on forever in two directions.
$OLQHsegment has a measurable length.
7. $midpoint is at the end of a line segment.
Two points that are on the same line are called collinear.
9. Parallel lines can intersect each other.
10. $ray has a starting point.
11. $Qangle cannot be measured.
12. $VRGDFDQLVcongruent to another identical soda can.
$plane LVDOZD\VÀDW
Lines on the same plane are coplanar.
15. Parallel lines are on the same plane.
$QVZHUV))7)77)))7)7777
—
61 —
Match the Halves
1. Parallel lines are on the same plane
$KDVQROHQJWKZLGWKRUGHSWK
3RLQWVOLQHVDQG¿JXUHV
B. and it can be measured.
$SODQHLVDÀDWVXUIDFHWKDW
&FRQQHFWVWZRSRLQWV
&RQJUXHQWREMHFWVDUHH[DFWO\HTXDO
D. cannot be counted and has no limit.
$QDQJOHLVPDGHXSRI
E. divides it in half.
$UD\LVSDUWRIDOLQHWKDW
)H[WHQGVLQ¿QLWHO\LQRQHGLUHFWLRQ
,QWHUVHFWLQJ¿JXUHV
G. includes all points in threedimensions.
H. are dimensions.
7KUHHRUPRUHSRLQWV
9. The midpoint of a line segment
$OLQHVHJPHQWKDVWZRHQGSRLQWV
$OLQHLVDVWUDLJKWSDWKWKDW
I. two rays with a common starting
point.
J. are coplanar if they are on the same
plane.
.LVWZRGLPHQVLRQDODQGH[WHQGV
LQ¿QLWHO\LQDOOGLUHFWLRQV
$SRLQWLVDSRVLWLRQLQVSDFHWKDW
L. and they do not intersect.
6SDFHLVLQ¿QLWHDQG
M. share at least one common point.
/HQJWKZLGWKDQGKHLJKW
N. on the same line are collinear.
6RPHWKLQJWKDWLVLQ¿QLWH
O. in both size and shape.
$QVZHUV/-.2,)01(%&$*+'
—
62 —
'H¿QLWLRQV
,Q¿QLWH. Unlimited or unending.
Dimension'LUHFWLRQVRIH[WHQVLRQOLNHOHQJWKZLGWKDQGKHLJKW
Space. The set of all points.
Point$SRVLWLRQLQVSDFH
Line$VWUDLJKWSDWKWKDWFRQQHFWVWZRSRLQWV
Segment$SLHFHRUVHFWLRQRIDOLQHZLWKWZRHQGSRLQWV
Midpoint$SRLQWWKDWGLYLGHVDOLQHVHJPHQWLQKDOI
Collinear Points. Three or more points that lie on the same line.
Intersect7RPHHWRUVKDUHDFRPPRQSRLQW
Ray3DUWRIDOLQHWKDWH[WHQGVLQ¿QLWHO\LQRQHGLUHFWLRQIURPDVWDUWLQJSRLQW
Angle. Two rays with a common starting point.
Congruent([DFWO\HTXDOLQVL]HDQGVKDSH
Plane$ÀDWWZRGLPHQVLRQDOVXUIDFHH[WHQGLQJLQ¿QLWHO\LQDOOGLUHFWLRQV
Coplanar. On the same plane.
Parallel lines&RSODQDUOLQHVWKDWGRQRWLQWHUVHFW
—
63 —
Which Belongs
1. $SRLQWOLQHVHJPHQWDQJOHKDVQROHQJWKZLGWKRUGHSWK
2. 7KHXQLYHUVHLVLQ¿QLWHGLPHQVLRQDOFRQJUXHQWEHFDXVHLWLVXQOLPLWHG
and cannot be measured.
The vertical corner-posts on the front of a building represent lines that are
FROOLQHDUSDUDOOHOLQ¿QLWH
7ZRWULDQJOHVKDYHWKHVDPHVL]HDQGVKDSHVRWKH\DUHSDUDOOHO
FRQJUXHQWFRSODQDU
$PLGSRLQWHQGSRLQWVWDUWLQJSRLQWLVDSRLQWWKDWGLYLGHVDVHJPHQWLQ
half.
7KHVFKRROEXLOGLQJKDVWKUHHGLPHQVLRQVDQJOHVPLGSRLQWVEHFDXVHLW
can be measured in more than two directions.
7. $SDUWRIDOLQHWKDWVWDUWVEXWGRHVQRWHQGLVDVHJPHQWUD\DQJOH
$GLPHQVLRQDOSODFHZKHUHDOLQHPLJKWH[LVWLVVSDFHDSODQHDSRLQW
9. 7KHJ\PÀRRUUHSUHVHQWVSDUWRIDSODQHOLQHGLPHQVLRQ
10. :KHQDOLQHDQGDOLQHVHJPHQWVKDUHDFRPPRQSRLQWWKH\KDYHD
PLGSRLQWDQLQWHUVHFWLRQDGLPHQVLRQ
11. 7KHZLQGRZVRQDÀDWZDOODUHSDUDOOHOFRSODQDUGLPHQVLRQDO
12. $OLQHUD\OLQHVHJPHQWLVVWUDLJKWFRQQHFWVWZRSRLQWVDQGLVLQ¿QLWH
7KUHHSRLQWVRQWKHVDPHUD\DUHFROOLQHDUFRSODQDUFRQJUXHQW
$QDQJOHDOLQHVHJPHQWDSODQHFDQEHPHDVXUHGLQGHJUHHV
$UD\VHJPHQWSRLQWLVDSLHFHRIDOLQHWKDWFDQEHPHDVXUHG
AnswersSRLQWLQ¿QLWHSDUDOOHOFRQJUXHQWPLGSRLQW
GLPHQVLRQVUD\VSDFHSODQHDQLQWHUVHFWLRQ
FRSODQDUOLQHFROOLQHDUDQDQJOHVHJPHQW
—
64 —
Multiple Choice
:KDWGRHVLWPHDQLIVRPHWKLQJLVLQ¿QLWH"
$,WFDQRQO\EHPHDVXUHGLQRQHGLUHFWLRQ
B. It is unlimited and unending.
&,WWDNHVDYHU\ORQJWLPHWRFRXQWLW
+RZPDQ\GLPHQVLRQVDUHUHSUHVHQWHGE\WKHVXUIDFHRIDSLHFHRISDSHU"
$GLPHQVLRQ
B. 2 dimensions
&GLPHQVLRQV
:KLFKRIWKHVHVWDWHPHQWVDERXW³VSDFH´LVWUXH"
$,WKDVGLPHQVLRQV
%,WLVLQ¿QLWH
&%RWK$DQG%DUHWUXH
:K\FDQ¶W\RXPHDVXUHDSRLQW"
$,WLVWRRVPDOO
%,WLVLQ¿QLWH
&,WKDVQRGLPHQVLRQV
:KDWLVDQLPSRUWDQWFKDUDFWHULVWLFRIDOLQH"
$,WVOHQJWKFDQEHPHDVXUHG
B. It has one dimension
&,WLVVWUDLJKW
7KHHGJHRIDWDEOHLVVWUDLJKWDQGKDVDOHQJWKRIIHHW:KLFKRIWKHIROORZLQJGRHVWKDWHGJHUHSUHVHQW"
$$OLQHVHJPHQW
%$SODQH
&$'LPHQVLRQ
:K\FDQ¶WDOLQHKDYHDPLGSRLQW"
$,WGRHVQ¶WKDYHHQRXJKGLPHQVLRQV
B. Its endpoints are too far apart.
&,WLVLQ¿QLWHDQGFDQQRWEHPHDVXUHG
:K\GRHV³FROOLQHDU´UHIHUWRWKUHHRUPRUHSRLQWV"
$$Q\WLPH\RXKDYHMXVWWZRSRLQWV\RXFDQGUDZDOLQHWKURXJKWKHP
%&ROOLQHDUREMHFWVDUHWKUHHGLPHQVLRQDO
&6RWKDWLWGRHVQRWJHWFRQIXVHGZLWK³FRSODQDU´
—
65 —
:KHQWZRURDGVLQWHUVHFWZKLFKFDQQRWEHWUXH"
$7KH\PLJKWEHFXUYHGURDGV
B. They are parallel roads
&7KH\PHHWHDFKRWKHU
:K\LVDVXQUD\OLNHDUD\LQJHRPHWU\"
$,WVWDUWVVRPHZKHUHDQGWUDYHOVLQDVWUDLJKWGLUHFWLRQ
B. Both are hot
&,WKDVWZRGLPHQVLRQV
:KLFKRIWKHIROORZLQJGRHVQRWUHSUHVHQWDQDQJOH"
$7KHKDQGVRIDFORFN
B. The corner of a piece of paper
&$SLQSRLQW
:KLFKRIWKHVHPLJKWEHFRQJUXHQW"
$7ZRUD\V
B. Two line segments
&7ZRSODQHV
:K\GRHVQ¶WWKHRFHDQVXUIDFHUHSUHVHQWDSODQH"
$,WLVQRWLQ¿QLWH
%,WLVQRWÀDW
&%RWK$DQG%DUHWUXH
:KLFKRIWKHVHKDVWREHFRSODQDU"
$7ZRLQWHUVHFWLQJOLQHV
%)RXUSRLQWV
&7KUHHOLQHVHJPHQWV
7KHWZRHGJHVRIDSHUIHFWO\VWUDLJKWÀDWURDGZRXOGEH
$&ROOLQHDUDQGFRQJUXHQW
B. Parallel and coplanar
&,Q¿QLWHDQGWZ
$QVZHUV
1. B
2. B
&
&
&
$
7. &
$
9. B
10. $
11. &
12. B
&
$
B
—
66 —
Complete the Sentence
1. ________________ has three dimensions and is boundless and
unlimited.
2. Three bowling pins arranged in a straight row might be called
______________ .
The line of the roof formed an ______________with the line of the wall.
$BBBBBBBBBBBBBBPLJKWEHUHSUHVHQWHGE\DEHDPRIOLJKW
7KHGLVWDQFHWKDWDSODQHH[WHQGVLQVSDFHLVBBBBBBBBBBBBBBBBBB
7KHÀDWVXUIDFHRIWKHLFHUHPLQGHGKLPRIDBBBBBBBBBBBBB
7. $VWUDLJKWOLQHKDVRQHBBBBBBBBBBBBBBBBBBBBDQGDWULDQJOHKDVWZR
_____________.
$SRVLWLRQRUORFDWLRQLQVSDFHLVFDOOHGDBBBBBBBBBBBBBBDQGLWKDVQR
OHQJWKZLGWKRUGHSWK
9. $VHFWLRQRIDOLQHFDOOHGDBBBBBBBBBBBBBBBBBBBFDQEHPHDVXUHG
10. $VHJPHQWLVGLYLGHGLQKDOIE\LWVBBBBBBBBBBBBBBBBBBBBBB
11. $OORIWKHOLQHVRQWKHEDVNHWEDOOFRXUWÀRRUDUHBBBBBBBBBBBBBBBB
12. The two roads ________________________ near the upper part of the
map.
The two squares on the paper are ________________ because they are
the same size.
The straight railings on the bridge were ________________to each
other.
7KHBBBBBBBBBBBBBBBEHWZHHQWKHWZRSRLQWVH[WHQGHGIRUHYHULQERWK
directions.
$QVZHUV
1. Space
2. &ROOLQHDU
$QJOH
5D\
,Q¿QLWH
Plane
7. Dimension
Point
9. Segment
10. Midpoint
11. &RSODQDU
12. Intersect
&RQJUXHQW
Parallel
Line
—
67 —
Creative Writing
Have the students write sentences of their own, based on the picture below. When finished,
have each student read his/her sentences to the others.
—
68 —
Place-Based Practice Activity
+DYHDVFDYHQJHUKXQWLQWKHFODVVURRPDWKRPHDQGRURXWGRRUVWR¿QGUHSUHVHQWDWLRQVRISRLQWVOLQHVSODQHVVHJPHQWVDQJOHVLQWHUVHFWLRQVDQGRWKHU
terms from this unit.
'LYLGHWKHFODVVLQWRWHDPVDQGDOORZFODVVWLPHIRUWHDPVWR¿QGDQGOLVWDV
PDQ\H[DPSOHVRIHDFKDVWKH\FDQ¿QG*LYHDWLPHOLPLW
25
$VVLJQWKHVFDYHQJHUKXQWDVKRPHZRUNWKHQJLYHHDFKWHDPWLPHWRFRPSLOH
WKHLU³PDVWHUOLVW´DWWKHEHJLQQLQJRIFODVV
+DYHWKHWHDPVH[FKDQJHOLVWVDQGFULWLTXH'LVFXVVDQ\H[DPSOHVWKDWUDLVH
TXHVWLRQVDVDFODVV
2IIHUH[WUDFUHGLWRUDSUL]HIRUWKHWHDPZLWKWKHPRVWH[DPSOHVRUJLYHFUHGLW
WRDQ\WHDPWKDWH[FHHGVDJLYHQQXPEHURIFRUUHFWH[DPSOHV
—
69 —
—
70 —
Unit Assessment
—
71 —
—
72 —
Unit 1 Geometry
An Introduction to Math Vocabulary
Name: ___________________
Date: ___________________
Match the definition in the column on the right with the key vocabulary in the column on the
left. Place the letter of the definition in front of the word it matches.
a. an infinitely small position in space
with no size or dimension.
1) _____ space
2) _____ dimension
b. the straight path that connects two
points and goes on forever in both
directions.
3) _____ point
4) _____ line
c. the 3-dimensional place in which
an object can exist or events can
take place.
5) _____ ray
6) _____ angel
d. directions of extension- length,
width, and height
e. half a line, or part of a line that has
a starting point and extends
infinitely in one direction.
f. made up of two rays with a
common starting point
Multiple Choice: Read each statement below and choose the best answer from the choices
provided. Circle the best choice.
7) The point in the middle of a line segment that divides a line segment in half is known as
___________.
a) the halfway point
b) the midpoint
c) the intersect
8) A piece or section of a line with two endpoints, that contains all the points in between and can
be measured is a __________________.
a) midpoint
b) collinear point
c) segment
—
73 —
9) When something is unlimited or unending, goes on forever and cannot be measured or counted
it is ____________________.
a) a segment
b) infinite
c) a ray
10) Telephone wires or lines on the pavement model or represent ________________ objects.
a) rays
b) intersects
c) two dimensional
11) Collinear points is/are __________ or more points that lie on the same line,
a) one
b) two
c) three
Fill in the Blank: Complete each of the statements below with the word that fits best. Choose
words from the Word Bank below.
Word Bank
Congruent
infinite
infinite
intersect
line
plane
plane
point
rays
12) A dot can be used to represent a
13) Space is
on a map.
. We can2019t measure all of space, and we can2019t measure the
number of points in any given space.
14) A
is made up of infinitely many points in a straight arrangement. It has no thickness; it
has one dimension.
15) Lines, line segments, rays, and other figures are said to
common point
—
74 —
if they meet, or share a
16) The sun2019s
2013 they start at the sun but do not end and are part of a line that has
a starting point and extends infinitely in one direction.
17) When points, lines, or figures are coplanar, it means they are on the same
18)
.
means exactly equal in size and shape.
19) A
is a flat surface that extends infinitely in all directions. It is two- dimensional; it has
length and width but no thickness.
Illustrations for Key Vocabulary: Choose the correct illustration to match the vocabulary
word.
20) Look at the illustration below and write in the space provided, the key vocabulary word that it
represents.
ILLUSTRATION OF COPLANAR________________.
21) Look at the two illustrations below. Circle the illustrations with parallel lines.
ILLUSTRATIONS ADDED for parallel and non parallel lines.
—
75 —
—
76 —
bev williams 11.9999
Unit 1 Geometry
An Introduction to Math Vocabulary
Name: ___________________
Date: ___________________
Match the definition in the column on the right with the key vocabulary in the column on the
left. Place the letter of the definition in front of the word it matches.
1)
c
space
2)
d
dimension
3)
a
point
4)
b
line
5)
e
ray
6)
f
angel
a. an infinitely small position in space
with no size or dimension.
b. the straight path that connects two
points and goes on forever in both
directions.
c. the 3-dimensional place in which
an object can exist or events can
take place.
d. directions of extension- length,
width, and height
e. half a line, or part of a line that has
a starting point and extends
infinitely in one direction.
f. made up of two rays with a
common starting point
Multiple Choice: Read each statement below and choose the best answer from the choices
provided. Circle the best choice.
7) The point in the middle of a line segment that divides a line segment in half is known as
___________.
a) the halfway point
b) the midpoint
c) the intersect
8) A piece or section of a line with two endpoints, that contains all the points in between and can
be measured is a __________________.
a) midpoint
b) collinear point
c) segment
—
77 —
9) When something is unlimited or unending, goes on forever and cannot be measured or counted
it is ____________________.
a) a segment
b) infinite
c) a ray
10) Telephone wires or lines on the pavement model or represent ________________ objects.
a) rays
b) intersects
c) two dimensional
11) Collinear points is/are __________ or more points that lie on the same line,
a) one
b) two
c) three
Fill in the Blank: Complete each of the statements below with the word that fits best. Choose
words from the Word Bank below.
Word Bank
Congruent
infinite
infinite
intersect
line
plane
plane
point
rays
12) A dot can be used to represent a point on a map.
13) Space is infinite . We can2019t measure all of space, and we can2019t measure the infinite
number of points in any given space.
14) A line is made up of infinitely many points in a straight arrangement. It has no thickness; it has
one dimension.
15) Lines, line segments, rays, and other figures are said to intersect if they meet, or share a
common point
—
78 —
16) The sun2019s rays 2013 they start at the sun but do not end and are part of a line that has a
starting point and extends infinitely in one direction.
17) When points, lines, or figures are coplanar, it means they are on the same plane .
18)
Congruent means exactly equal in size and shape.
19) A plane is a flat surface that extends infinitely in all directions. It is two- dimensional; it has
length and width but no thickness.
Illustrations for Key Vocabulary: Choose the correct illustration to match the vocabulary
word.
20) Look at the illustration below and write in the space provided, the key vocabulary word that it
represents.
ILLUSTRATION OF COPLANAR________________.
Coplanar
21) Look at the two illustrations below. Circle the illustrations with parallel lines.
ILLUSTRATIONS ADDED for parallel and non parallel lines.
Correct answer not entered.
—
79 —
—
80 —
UNIT 2
Angles
Sealaska Heritage Institute
Grade Level Expectations for Unit 2
Unit 2—Angles
Alaska State Mathematics Standard A
$VWXGHQWVKRXOGXQGHUVWDQGPDWKHPDWLFDOIDFWVFRQFHSWVSULQFLSOHVDQGWKHRULHV
$VWXGHQWZKRPHHWVWKHFRQWHQWVWDQGDUGVKRXOG
$FRQVWUXFWGUDZPHDVXUHWUDQVIRUPFRPSDUHYLVXDOL]HFODVVLI\DQGDQDO\]HWKH
UHODWLRQVKLSVDPRQJJHRPHWULF¿JXUHV
Alaska State Mathematics Standard C
$VWXGHQWVKRXOGXQGHUVWDQGDQGEHDEOHWRIRUPDQGXVHDSSURSULDWHPHWKRGVWRGH¿QH
DQGH[SODLQPDWKHPDWLFDOUHODWLRQVKLSV
$VWXGHQWZKRPHHWVWKHFRQWHQWVWDQGDUGVKRXOG
&H[SUHVVDQGUHSUHVHQWPDWKHPDWLFDOLGHDVXVLQJRUDODQGZULWWHQSUHVHQWDWLRQV
SK\VLFDOPDWHULDOVSLFWXUHVJUDSKVFKDUWVDQGDOJHEUDLFH[SUHVVLRQV
&UHODWHPDWKHPDWLFDOWHUPVWRHYHU\GD\ODQJXDJH
GLEs
The student demonstrates an understanding of geometric relationships by
>@*LGHQWLI\LQJDQDO\]LQJFRPSDULQJRUXVLQJSURSHUWLHVRIDQJOHVLQFOXGLQJVXSSOHPHQWDU\RUFRPSOHPHQWDU\
The student demonstrates an understanding of geometric relationships by
>@*LGHQWLI\LQJDQDO\]LQJFRPSDULQJRUXVLQJSURSHUWLHVRISODQH¿JXUHV
‡VXSSOHPHQWDU\FRPSOHPHQWDU\RUYHUWLFDODQJOHV
The student communicates his or her mathematical thinking by
>@36UHSUHVHQWLQJPDWKHPDWLFDOSUREOHPVQXPHULFDOO\JUDSKLFDOO\DQGRUV\PEROLFDOO\WUDQVODWLQJDPRQJWKHVHDOWHUQDWLYHUHSUHVHQWDWLRQVRUXVLQJDSSURSULDWHYRFDEXODU\
V\PEROVRUWHFKQRORJ\WRH[SODLQMXVWLI\DQGGHIHQGVWUDWHJLHVDQGVROXWLRQV
>@36UHSUHVHQWLQJPDWKHPDWLFDOSUREOHPVQXPHULFDOO\JUDSKLFDOO\DQGRUV\PEROLFDOO\FRPPXQLFDWLQJPDWKLGHDVLQZULWLQJRUXVLQJDSSURSULDWHYRFDEXODU\V\PEROVRU
WHFKQRORJ\WRH[SODLQMXVWLI\DQGGHIHQGVWUDWHJLHVDQGVROXWLRQV
Vocabulary
& Definitions
Introduction of Math Vocabulary
Angle
$QDQJOHLVPDGHXSRIWZRUD\VZLWKDFRPPRQVWDUWLQJ
point. The symbol for angle is
$QJOHVFDQEHVHHQDOODURXQG\RXRQEXLOGLQJVFORFNV
URDGLQWHUVHFWLRQVDQGLQWKHZD\\RXEHQG\RXUDUPV
DQGOHJV7KRVHDUHMXVWDIHZH[DPSOHV
Angle measure
7KHVL]HRIDQDQJOHRUDPRXQWRIWXUQLQJRUVSDFH
EHWZHHQWKHWZRUD\VRIDQDQJOHPHDVXUHGLQGHJUHHV
or radians. Protractors and other devices are used to
measure angles.
7RDFKLHYHJRRGIRUPDQGVSHHGWKLVVNLHUPLJKWZDQW
WRNQRZWKHDQJOHPHDVXUHEHWZHHQKLVVNLVDQGWKH
angle measure of his spine in relation to the ground.
$VNVWXGHQWVLIWKH\FDQWKLQNRIRWKHUUHDVRQVWRPHDVXUHDQJOHVLHEXLOGHUV
PHDVXUHDQJOHVIRUURRIV
—
87 —
Introduction of Math Vocabulary
Degree
$XQLWRIDQJOHPHDVXUH7KHUHDUHGHJUHHVLQDFLUFOHRU
a complete revolution. The symbol for degree is o.
$FRPSDVVPHDVXUHVGLUHFWLRQVXVLQJGHJUHHV
Radian
$QRWKHUXQLWIRUPHDVXULQJDQJOHV7KHDUHŸ radians
LQDFLUFOHRUDFRPSOHWHUHYROXWLRQo = Ÿ radians.
5DGLDQVDUHPRVWRIWHQXVHGWRPHDVXUHWKHVSHHGDW
which wheels and machine parts revolve.
Vertex
(of an angle)
7KHSRLQWZKHUHWZRUD\VPDNLQJXSDQDQJOHPHHWRUWKHFRUQHU
point.
7KHWLSRIWKHVSLUHVKRZQLQWKHSKRWRUHSUHVHQWVDYHUWH[
$QRWKHUH[DPSOHPLJKWEHWKHFRUQHURIDSLHFHRISDSHUZKHUHWKHWZRHGJHV
meet.
—
88 —
Introduction of Math Vocabulary
Side
(of an angle)
Either of two rays that make up an angle.
,QWKHSKRWRWKHKDQGVRIDFORFNUHSUHVHQWWKH
of an angle.
Right angle
$ULJKWDQJOHLVDoDQJOH:KHQOLQHVDUHSHUSHQGLFXODU
WKH\IRUPULJKWDQJOHV5LJKWDQJOHVDUHHDV\WR¿QGWKH\
are very common in buildings. Usually the angle between two
ZDOOVLVDULJKWDQJOHDQGWKHFRUQHUVRIZLQGRZVDQGGRRUV
are right angles.
The mast of this boat forms a right angle with the horizon.
—
89 —
sides
Introduction of Math Vocabulary
Perpendicular
$WDULJKWoDQJOH
,QWKLVSLFWXUHWKHOLQHVRIJURXWEHWZHHQWKHWLOHVDUH
SHUSHQGLFXODU2WKHUH[DPSOHVRISHUSHQGLFXODUOLQHVDUH
XVXDOO\WKHDGMRLQLQJVLGHVRIGRRUVDQGZLQGRZV
Acute angle
$QDQJOHWKDWKDVDPHDVXUHOHVVWKDQo.
$WWKHKDQGVRIDFORFNIRUPDQDFXWHDQJOH$FXWH
DQJOHVFDQEHIRXQGRQURRIVRQVLJQVDQGLQWULDQJOHV,QWKLV
SKRWRWKHODSWRSLVRSHQWRDQDFXWHDQJOH
—
90 —
Introduction of Math Vocabulary
Obtuse angle
$QDQJOHWKDWKDVDPHDVXUHPRUHWKDQƒDQGOHVVWKDQ
ƒ
$VWRSVLJQKDVREWXVHDQJOHV,QWKHSKRWRWKHVFLVVRUV
are open to an obtuse angle.
Adjacent angles
$QJOHVWKDWDUHLPPHGLDWHO\QH[WWRHDFKRWKHU7KH\DUHLQWKHVDPHSODQH
VKDUHDFRPPRQYHUWH[DQGDFRPPRQVLGHDQGGRQRWRYHUODS
2QWKHELF\FOHLQWKHSLFWXUHWKHUHDUHDGMDFHQWDQJOHVRIWKHIUDPHZLWKYHUWLFHV
DWWKHFUDQN$VNVWXGHQWVLIWKH\FDQ¿QGRWKHUH[DPSOHVRIDGMDFHQWDQJOHVRQ
the bicycle.
—
91 —
Introduction of Math Vocabulary
Linear pair
$SDLURIDGMDFHQWDQJOHVIRUPHGE\LQWHUVHFWLQJOLQHV
2QWKHSLFWXUHRILQWHUVHFWLQJMHWWUDLOVWKHUHDUHIRXUOLQHDU
pairs of angles.
Complementary angles
Two acute angles that add up to 90o)RUH[DPSOHDo angle
DQGDo angle are complementary.
,QWKHSKRWRRIDJDWHWKHGLDJRQDOVGLYLGHWKHFRUQHUVLQWRFRPplementary angles.
—
92 —
Introduction of Math Vocabulary
Supplementary angles
7ZRDQJOHVZKRVHPHDVXUHVDGGXSWRo)RUH[DPSOHDo angle and a 70o angle are supplementary.
$VNVWXGHQWVLIWKH\FDQ¿QGWKHVXSSOHPHQWDU\DQJOHV
LQWKLVSKRWRRIDVNLQERDWIUDPHZKHUHWKHVXSSRUWV
intersect.
Vertical angles
$SDLURIDQJOHVWKDWDUHRSSRVLWHHDFKRWKHU
formed by two lines that intersect.
$QJOHVDQGDUHYHUWLFDODQJOHVDQGDQJOHV
DQGDUHYHUWLFDODQJOHV
Many different vertical
angles can be found on
the photo of the quilt.
Vertical angles can also
EHIRXQGDWURDGLQWHUVHFWLRQVRQEXLOGLQJVDQGRWKHU
objects.
—
93 —
—
94 —
Language and Skills
Development
Using the Math Vocabulary Terms
Language & Skills Development
LISTENING
Use the activity pages
from the Student
Support Materials.
Illustration Bingo
Provide each student with a copy of the mini-illustration activity page from the
student support materials. The students should cut out the illustrations. Each
VWXGHQWVKRXOGWXUQKLVKHULOOXVWUDWLRQVIDFHGRZQRQWKHGHVN7KHQHDFKVWX
GHQWVKRXOGWXUQ21(LOOXVWUDWLRQIDFHXS6D\DYRFDEXODU\ZRUG$Q\VWXGHQW
or students who have the illustration for the vocabulary word you said face up
RQWKHLUGHVNVVKRXOGVKRZWKHLULOOXVWUDWLRQV7KRVHLOOXVWUDWLRQVVKRXOGWKHQEH
SXWWRWKHVLGHDQGWKHVWXGHQWVVKRXOGWXUQRYHUDQRWKHULOOXVWUDWLRQ7KH¿UVW
VWXGHQWRUVWXGHQWVWRKDYHQRLOOXVWUDWLRQVOHIWRQWKHLUGHVNVZLQWKHURXQG7KH
LOOXVWUDWLRQVPD\EHFROOHFWHGPL[HGDQGUHGLVWULEXWHGWRWKHVWXGHQWVIRUWKH
different rounds of the activity.
SPEAKING
Role’m Again!
0RXQWWKHYRFDEXODU\LOOXVWUDWLRQVRQWHKFKDONERDUG1XPEHUHDFKLOOXVWHUDWLRQ
XVLQJWKHQXPEHUVWR*LYHGLFHWRWKHVWXGHQWV+DYHHDFKVWXGHQWUROOKLV
her dice. The student should identify a picture with the same number showing
on his/her die and then use that word in a sentence.
READING
Use the activity pages
from the Student
Support Materials.
Sight Word Bingo
Provide each student with a set of sight words from this unit. Each student should
SODFHRQHZRUGRQKLVKHUGHVNKROGLQJWKHRWKHUVVHSDUDWHO\6KRZDYRFDEXODU\
SLFWXUH,IDVWXGHQWKDVWKHZRUGIRUWKDWSLFWXUHRQKLVKHUGHVNKHVKHVKRXOG
show it to you; the student should then put that word to the side and place another
RQHRQWKHGHVN&RQWLQXHLQWKLVZD\XQWLODVWXGHQWKDVQRZRUGVOHIW
WRITING
What’s Your Letter?
Show one of the vocabulary pictures to the students. Each student should then
ZULWH21(OHWWHUWKDWLVLQWKHZRUGIRUWKDWSLFWXUH7KHQFKHFNDOOWKHVWXGHQWV¶
letters to determine if all of the letters of the word were written. Have the stuGHQWVLGHQWLI\WKH³PLVVLQJOHWWHUV´LIWKHUHDUHDQ\
Use the activity pages
from the Student
Support Materials.
—
97 —
Student Support
Materials
—
101 —
—
103 —
—
105 —
—
107 —
—
109 —
—
111 —
—
113 —
—
115 —
—
117 —
—
119 —
—
121 —
—
123 —
—
125 —
—
127 —
—
129 —
—
131 —
—
132 —
True-False Sentences
(Listening and/or Reading Comprehension)
1. The two rays that make up an angle have a common starting point
2. $UXOHUFDQEHXVHGWRJHWDQangle measure.
$degree LVRQHRIGLYLVLRQVRIDFLUFOH
$radian is the unit of measure used on a compass
Not all angles have a vertex.
Every angle has three sides.
7. The adjacent sides of a square form right angles.
8. Perpendicular lines never intersect.
9. $VPDOOVKDUSDQJOHZRXOGEHDQacute angle.
10. $Qobtuse angle is larger than a right angle.
11. Adjacent angles could add up to 100 degrees.
12. $QJOHVLQDlinear pair are always acute angles.
$QREWXVHDQJOHFDQEHcomplementary to another angle.
14. Supplementary angles must be acute angles
15. Vertical angles are formed by two intersecting lines
$QVZHUV7)7)))7)777)))7
1. Angles can be measured in inches.
2. Angle measuresUHSUHVHQWWKHDPRXQWRI³WXUQLQJ´EHWZHHQWZRUD\V
Line segments are measured in degrees.
$FLUFOHLVPDGHXSRIŸRUDERXWradians.
The common starting point for the two rays in an angle is called the vertex.
The side of an angle is the same as one of the rays of the angle.
7. Right angles have measures of 100 degrees.
:KHQWZROLQHVLQWHUVHFWWRIRUPULJKWDQJOHVWKH\DUHperpendicular.
9. $WWKHKDQGVRIDFORFNIRUPDQacute angle.
10. $Qobtuse anglePLJKWKDYHDPHDVXUHRIGHJUHHV
11. Two angles that are across from each other are adjacent angles.
12. In a linear pairWKHDQJOHPHDVXUHVDGGXSWRGHJUHHV
$GHJUHHDQJOHDQGDGHJUHHDQJOHDUHcomplementary angles.
$QJOHVLQDOLQHDUSDLUDUHsupplementary.
15. Vertical anglesDUHQH[WWRHDFKRWKHU
$QVZHUV)7)777)7)))777)
—
133 —
Match the Halves
1. Vertical angles
$LVJLYHQLQGHJUHHVRUUDGLDQV
7ZRUD\VZLWKDFRPPRQYHUWH[
B. is one of its rays.
7ZRDQJOHVZKRVHPHDVXUHVDGGXS
WRo
&DUHSHUSHQGLFXODU
$QDQJOHPHDVXUH
D. acute angles.
,QDQDQJOHWKHYHUWH[LV
E. share a common ray.
7RPDNHXSDOLQHDUSDLUDQJOHV
)PDNHXSHDFKDQGHYHU\DQJOH
$QJOHVZLWKPHDVXUHVRIo are
G. are measured in radians.
2QHRIGLYLVLRQVRIDFLUFOH
H. the point shared by two rays.
&RPSOHPHQWDU\DQJOHVDUHDOZD\V
I. measure less than 90
$QJOHVUHODWHGWRWKHVSHHGRI
revolution
J. are opposite each other.
11. The side of an angle
K. must be adjacent.
$GMDFHQWDQJOHV
L. is known as a degree.
$QJOHVEHWZHHQoDQGo are
M. right angles.
/LQHVWKDWLQWHUVHFWWRIRUPULJKW
angles
N. obtuse angles.
$FXWHDQJOHV
O. are supplementary.
o
$QVZHUV
1 J 2F 3O
4A 5H 6K 7M 8L 9D 10G 11B 12E 13N 14C 15I
—
134 —
'H¿QLWLRQV
Angle: Two rays with a common starting point.
Angle measure:7KHVL]HRIDQDQJOHRUDPRXQWRIWXUQLQJRUVSDFHEHWZHHQ
WKHWZRUD\VRIDQDQJOHPHDVXUHGLQGHJUHHVRUUDGLDQV
Degreeth of a circle; a unit of angle measure.
Radian: 1/2Ÿ; a unit of angle measure often used to measure the amount of
revolution.
VertexRIDQDQJOH7KHSRLQWZKHUHWKHWZRUD\VRIDQDQJOHPHHW
SideRIDQDQJOH(LWKHURIWKHWZRUD\VWKDWPDNHXSDQDQJOH
Right angle:$o angle.
Perpendicular$WDo angle.
Acute angle:$QDQJOHWKDWKDVDPHDVXUHOHVVWKDQo.
Obtuse angle:$QDQJOHWKDWKDVDPHDVXUHPRUHWKDQƒDQGOHVVWKDQƒ
Adjacent angles:$QJOHVWKDWDUHLPPHGLDWHO\QH[WWRHDFKRWKHU
Linear pair$SDLURIDGMDFHQWDQJOHVIRUPHGE\LQWHUVHFWLQJOLQHV
Complementary angles: Two acute angles that add up to 90o .
Supplementary angles:7ZRDQJOHVZKRVHPHDVXUHVDGGXSWRo.
Vertical angles$SDLURIDQJOHVWKDWDUHRSSRVLWHHDFKRWKHUIRUPHGE\WZR
lines that intersect.
—
135 —
Which Belongs
1. 7KHVL]HRIDQDQJOHLVNQRZQDVDUDGLDQDQDQJOHPHDVXUHDGHJUHH
2. :KHQWZROLQHVLQWHUVHFWWKH\DOZD\VIRUPYHUWLFDODFXWHULJKWDQJOHV
$XQLWRIDQJOHPHDVXUHWKDWFRPPRQO\LVDVVRFLDWHGZLWKWXUQLQJRUUHYROXWLRQVLVWKHGHJUHHUDGLDQGLDPHWHU
,IWZRDGMDFHQWDQJOHVDUHIRUPHGE\LQWHUVHFWLQJOLQHVWKH\DUHYHUWLFDO
DQJOHVDOLQHDUSDLUFRPSOHPHQWDU\DQJOHV
7KHVLGHPHDVXUHFRPSOHPHQWRIDQDQJOHLVHLWKHURILWVWZRUD\V
&RPSOHPHQWDU\6XSSOHPHQWDU\9HUWLFDODQJOHVKDYHPHDVXUHVWKDW
add up to 90o.
7. :KHQWZRDGMRLQLQJUD\VDUHSHUSHQGLFXODUWKH\IRUPDQREWXVHDYHUWLFDODULJKWDQJOH
$QDFXWHDULJKWDQREWXVHDQJOHKDVDPHDVXUHODUJHUWKDQo.
9. /LQHVUD\VRUVHJPHQWVWKDWDUHDWDoDQJOHVWRHDFKRWKHUDUHYHUWLFDOSHUSHQGLFXODUDGMDFHQW
10. 7ZRUD\VRIDQDQJOHPHHWDWWKHPLGSRLQWYHUWH[VLGH
11. $W30WKHKDQGVRIDFORFNUHSUHVHQWDQDFXWHDQREWXVHDULJKW
angle.
12. 7KHUHDUHGHJUHHVUDGLDQVVLGHVLQDFLUFOH
$QJOHVWKDWVKDUHDFRPPRQUD\DUHYHUWLFDOOLQHDUDGMDFHQWDQJOHV
$OLQHDUSDLUDYHUWH[DQDQJOHKDVWZRUD\VWKDWPHHWDWDFRPPRQ
point.
,IWZRDQJOHPHDVXUHVDGGXSWRoWKHDQJOHVDUHVXSSOHPHQWDU\
FRPSOHPHQWDU\DGMDFHQW
1. $QDQJOHPHDVXUH
2. Vertical
5DGLDQ
$OLQHDUSDLU
Side
&RPSOHPHQWDU\
7. $ULJKW
$QREWXVH
9. Perpendicular
10. 9HUWH[
11. $QDFXWH
12. Degrees
$GMDFHQW
$QDQJOH
Supplementary
—
136 —
Multiple Choice
1. Which one of the following would not contain any representations of
DQJOHV"
DDQH[HUFLVHEDOO
EDSDLURIGLFH
FWKHURRIRIDKRXVH
:KLFKRIWKHIROORZLQJGHVFULEHVDQDQJOHPHDVXUH"
DWKHDPRXQWWKDWWKHVLGHVRIDQDQJOHDUHVSUHDGDSDUWLQGHJUHHV
EWKHVL]HRIDQDQJOHLQFHQWLPHWHUV
FWKHQXPEHURIPHWULFXQLWVLQDQDQJOH
$Q\FLUFOHFRQWDLQV
D degrees
EŸ radians
FERWKRIWKHDERYH
7KHDQJOHRIDURRÀLQHPLJKWEHPHDVXUHGLQ
DHUJVRUGHJUHHV
EGHJUHHVRUUDGLDQV
FIHHWRUUDGLDQV
:KHQWZRVWUHHWVRQDPDSLQWHUVHFWDWDQDQJOHWKHSRLQWZKHUHWKH\PHHW
would be
DWKHVLGHRIWKHDQJOH
EWKHFHQWHURIWKHDQJOH
FWKHYHUWH[RIWKHDQJOH
7KHVLGHRIDQDQJOHPLJKWEHUHSUHVHQWHGE\
DDEODGHRQDQRSHQSDLURIVFLVVRUV
EWKHFRUQHURIDQRWHERRN
FWKHHGJHRIDSODWH
,QZKLFKRIWKHIROORZLQJSODFHVZRXOG\RX¿QGWKHPRVWULJKWDQJOHV"
DWKHGRPHRIDFDWKHGUDO
EDVFKRROEXLOGLQJ
FWKHLQWHULRURIDFDU
$WUHHLVSHUSHQGLFXODUWRWKHJURXQGLI
DLWJURZVVWUDLJKWXS
ELWLVJURZLQJLQDSODFHWKDWLVÀDW
FERWKRIWKHDERYHDUHWUXH
—
137 —
,I\RXPDNHDYHU\VKDUSULJKWWXUQDWDURDGLQWHUVHFWLRQ\RXZRXOGEH
turning at
DDQDFXWHDQJOH
EDVXSSOHPHQWDU\DQJOH
FDSHUSHQGLFXODUDQJOH
$QREWXVHDQJOH
DPXVWPHDVXUHOHVVWKDQo
EFDQQRWKDYHDPHDVXUHRIPRUHWKDQo
FFRXOGDOVREHDULJKWDQJOH
:KHQWZROLQHVLQWHUVHFWWKH\IRUP
DRQHSDLURIDGMDFHQWDQJOHVDQGRQHSDLURIYHUWLFDODQJOHV
EWZRSDLUVRIFRPSOHPHQWDU\DQJOHVDQGWZRSDLUVRIDGMDFHQWDQJOHV
FIRXUSDLUVRIDGMDFHQWDQJOHVDQGWZRSDLUVRIYHUWLFDODQJOHV
:KLFKRIWKHIROORZLQJDUHWKHVDPH"
DDGMDFHQWVXSSOHPHQWDU\DQJOHVDQGDOLQHDUSDLU
EYHUWLFDODQJOHVDQGDGMDFHQWFRPSOHPHQWDU\DQJOHV
FDGMDFHQWULJKWDQJOHVDQGFRPSOHPHQWDU\DQJOHV
,IDQDQJOHLVFRPSOHPHQWDU\WRDQRWKHUDQJOHLWPXVWEH
DDULJKWDQJOH
EDQDFXWHDQJOH
FDQREWXVHDQJOH
9HUWLFDODQJOHVDUHQHYHU
DREWXVH
EVXSSOHPHQWDU\
FDGMDFHQW
6XSSOHPHQWDU\DQJOHVDOZD\V
DPDNHXSDOLQHDUSDLU
EDUHDGMDFHQW
FKDYHPHDVXUHVWKDWDGGXSWRo
1. a
2. a
c
b
c
a
7. b
c
9. a
10. b
11. c
12. a
b
c
c
—
138 —
Complete the Sentence
1. The two rays of an angle are also called the two _______________.
2. &RPSOHPHQWDU\DQJOHVDUHDOZD\VBBBBBBBBBBBBBBBBBBBBDQJOHV
$QBBBBBBBBBBBBBBBBBBBBBBBBBLVWKHDPRXQWRIWXUQLQJRUVSDFH
between two rays that form an angle.
$QJOHVWKDWDUHIRUPHGE\LQWHUVHFWLQJOLQHVDUHBBBBBBBBBBBBBBBBBBBBLI
they are not adjacent.
:KHQDUD\PRYHVLQDFRPSOHWHFLUFOHLWFRYHUVDGLVWDQFHRIŸ
___________.
:KHQWZRUD\VEHJLQDWDFRPPRQSRLQWWKH\IRUPDQ
___________________.
7. The corners of a rectangle are _______________angles.
________________angles have measures that add up to equal a right
angle’s measure.
9. ,QPRVWEXLOGLQJVWKHZDOOVDUHBBBBBBBBBBBBBBBBBBBWRWKHÀRRU
10. ,QDQDQJOHWKHBBBBBBBBBBBBBBBBBBBBBBBBBLVWKHSRLQWZKHUHWZR
rays meet.
11. $QJOHVDUHBBBBBBBBBBBBBBBBBBBBLIWKH\DUHZLGHUWKDQULJKWDQJOHV
DQGPHDVXUHOHVVWKDQo.
12. 2QDFRPSDVVDQJOHVDUHPHDVXUHGLQBBBBBBBBBBBBBBBBBBB
:KHQVXSSOHPHQWDU\DQJOHVDUHQRWDGMDFHQWWKH\GRQ¶WIRUPD
____________.
Two right angles would also be ___________________angles.
BBBBBBBBBBBBBBBBBBBBBBDQJOHVDUHQH[WWRHDFKRWKHUDQGVKDUHD
common ray.
$QVZHUV
1. sides
2. acute
angle measure
vertical
radians
angle
7. right
complementary
9. perpendicular
10. YHUWH[
11. obtuse
12. degrees
linear pair
supplementary
DGMDFHQW
—
139 —
Creative Writing
Have the students write sentences of their own, based on the picture below. When finished,
have each student read his/her sentences to the others.
—
140 —
Place-Based Practice Activity
$VNVWXGHQWVWR¿QGDQGSKRWRJUDSKUHSUHVHQWDWLRQVRIGLIIHUHQWW\SHVRIDQJOHV
LQWKHLURZQHQYLURQPHQW6WXGHQWVPD\ZRUNLQSDLUVRUVPDOOJURXSVVKDULQJ
DFDPHUDRUWKH\PD\VNHWFKWKLQJVWKH\¿QGLIFDPHUDVDUHQRWDYDLODEOH
The following types of angles should be included:
5LJKWDQJOHV
$FXWHDQJOHV
Obtuse angles
9HUWLFDO$QJOHV
Linear pairs of angles
$GMDFHQWDQJOHV
Supplementary angles
&RPSOHPHQWDU\DQJOHV
Vertical angles
'HSHQGLQJRQWLPHDYDLODEOHKDYHHDFKVWXGHQWRUJURXSWU\WR¿QGDWOHDVWRQH
RIHDFKDQJOHW\SHRUDVVLJQWZRRUWKUHHDQJOHW\SHVWRHDFKVWXGHQWJURXS
$OORZFODVVDQGRUKRPHZRUNWLPHIRUVWXGHQWVWRWDNHWKHSKRWRVWKHQVKDUH
and compile them in a display or a slide show.
—
141 —
—
142 —
Unit Assessment
—
143
3 —
—
144 —
Geometry: Unit 2-Angles
Name: ___________________
Date: ___________________
Match the symbol on the right with the word it represent on the left. Place the letter of the
correct symbol in front of the word it matches.
a. illustration of complementary angle
1) _____ angles
2) _____ degree
3) _____ acute angle
4) _____ obtuse angle
b. illustration of obtuse angle
5) _____ perpendicular
6) _____ linear pair
c. illustration of adjacent angle
7) _____ adjacent angle
8) _____ complementary angle
d. illustration of linear pair
e. illustration of perpendicular lines
f. illustration of acute angle
g. Illustration of angle
h. illustration of degree
—
145 —
Word Bank
acute
angle
complementary
degree
obtuse
perpendicular
right
vertex
vertical
9) A stop sign has
angles.
10) The lines of grout between tiles are
.
triangle.
11) On a clock with sweep hands, the time 12:05 creates a
12) The corner of a window or of a door creates a
angle.
13) When you use a protractor to find out the size of an angle, or amount of turning or space
between the two rays of an angle, measured in degrees or radians you calculating an
measure.
14) A pair of angles that are opposite each other, formed by two lines that intersect are
angles.
15)
The corner of a piece of paper where the edges meet is the
of an angle.
Multiple Choice: Read each statement below and select the answer that fits best. Circle letter
in front of you best choice.
16) Either of the two rays that make up an angle are the ____________ of an angle.
a) vertex
b) degree
c) side
17) Another unit for measuring angles, often used to measure the speed at which wheels and
machine parts revolve is the ____________.
a) radian
b) vertex
c) degree
—
146 —
o
18) Two angles whose measures add up to 180o are called _______________.
a) obtuse angles
b) complementary angles
c) adjacent angles
19) ___________ angles are pair of angles that are opposite each other, formed by two lines that
intersect.
a) vertical
b) complementary
c) supplementary
20) A unit of angle measure is known as a
.
Illustrations of key vocabulary:
21) Draw the triangles below each of the key vocabulary words they represent.
acute angle obtuse angle vertical angle adjacent angle
—
147 —
—
148 —
Geometry: Unit 2-Angles
Name: ___________________
Date: ___________________
Match the symbol on the right with the word it represent on the left. Place the letter of the
correct symbol in front of the word it matches.
a. illustration of complementary angle
1)
g
angles
2)
h
degree
3)
f
acute angle
4)
b
obtuse angle
e. illustration of perpendicular lines
5)
e
perpendicular
f. illustration of acute angle
6)
d
linear pair
g. Illustration of angle
7)
c
adjacent angle
8)
a
complementary angle
b. illustration of obtuse angle
c. illustration of adjacent angle
d. illustration of linear pair
h. illustration of degree
Word Bank
acute
angle
complementary
degree
obtuse
perpendicular
right
vertex
vertical
9) A stop sign has obtuse angles.
10) The lines of grout between tiles are perpendicular .
11) On a clock with sweep hands, the time 12:05 creates a acute triangle.
12) The corner of a window or of a door creates a right angle.
—
149 —
13) When you use a protractor to find out the size of an angle, or amount of turning or space
between the two rays of an angle, measured in degrees or radians you calculating
an angle measure.
14) A pair of angles that are opposite each other, formed by two lines that intersect
are vertical angles.
15) The corner of a piece of paper where the edges meet is the vertex of an angle.
Multiple Choice: Read each statement below and select the answer that fits best. Circle letter
in front of you best choice.
16) Either of the two rays that make up an angle are the ____________ of an angle.
a) vertex
b) degree
c) side
17) Another unit for measuring angles, often used to measure the speed at which wheels and
machine parts revolve is the ____________.
a) radian
b) vertex
c) degree
18) Two angles whose measures add up to 180o are called _______________.
a) obtuse angles
b) complementary angles
c) adjacent angles
19) ___________ angles are pair of angles that are opposite each other, formed by two lines that
intersect.
a) vertical
b) complementary
c) supplementary
—
150 —
20) A unit of angle measure is known as a degree .
Illustrations of key vocabulary:
21) Draw the triangles below each of the key vocabulary words they represent.
acute angle obtuse angle vertical angle adjacent angle
Illustrations of acute angle obtuse angle vertical angle adjacent angle
—
151 —
—
152 —
UNIT 3
Proofs
Sealaska Heritage Institute
Grade Level Expectations for Unit 3
Unit 3—Proofs
Alaska State Mathematics Standard C
$VWXGHQWVKRXOGXQGHUVWDQGDQGEHDEOHWRIRUPDQGXVHDSSURSULDWHPHWKRGVWRGH¿QH
DQGH[SODLQPDWKHPDWLFDOUHODWLRQVKLSV
$VWXGHQWZKRPHHWVWKHFRQWHQWVWDQGDUGVKRXOG
&H[SUHVVDQGUHSUHVHQWPDWKHPDWLFDOLGHDVXVLQJRUDODQGZULWWHQSUHVHQWDWLRQV
SK\VLFDOPDWHULDOVSLFWXUHVJUDSKVFKDUWVDQGDOJHEUDLFH[SUHVVLRQV
&UHODWHPDWKHPDWLFDOWHUPVWRHYHU\GD\ODQJXDJH
GLEs
The student communicates his or her mathematical thinking by
>@36UHSUHVHQWLQJPDWKHPDWLFDOSUREOHPVQXPHULFDOO\JUDSKLFDOO\DQGRUV\PEROLFDOO\WUDQVODWLQJDPRQJWKHVHDOWHUQDWLYHUHSUHVHQWDWLRQVRUXVLQJDSSURSULDWHYRFDEXODU\
V\PEROVRUWHFKQRORJ\WRH[SODLQMXVWLI\
and defend strategies and solutions
>@36UHSUHVHQWLQJPDWKHPDWLFDOSUREOHPVQXPHULFDOO\JUDSKLFDOO\DQGRUV\PEROLFDOO\FRPPXQLFDWLQJPDWKLGHDVLQZULWLQJRUXVLQJDSSURSULDWHYRFDEXODU\V\PEROVRU
WHFKQRORJ\WRH[SODLQMXVWLI\DQGGHIHQGVWUDWHJLHVDQGVROXWLRQV
The student demonstrates an ability to use logic and reason by
>@36IROORZLQJDQGHYDOXDWLQJDQDUJXPHQWMXGJLQJLWVYDOLGLW\XVLQJLQGXFWLYHRUGHductive reasoning and logic; or making and testing conjectures
>@36XVLQJPHWKRGVRISURRILQFOXGLQJGLUHFWLQGLUHFWDQGFRXQWHUH[DPSOHVWRYDOLdate conjectures
Vocabulary
& Definitions
Introduction of Math Vocabulary
conditional statement
$FRQGLWLRQDOVWDWHPHQWLVWKHFRPELQDWLRQRIWZRVWDWHPHQWVLQDQ
³LIWKHQ´VWUXFWXUH)RUH[DPSOH³,ILWLVUDLQLQJWKHQWKH¿HOGLVZHW´
$VNVWXGHQWVWRKHOS\RXWKLQNRIPRUHH[DPSOHVRI³LIWKHQ´VWDWHments.
hypothesis
7KHK\SRWKHVLVLVWKH¿UVWSDUWRUWKH³LI´SDUWRIDQ
³LIWKHQ´VWDWHPHQW8VHWKHSLFWXUHWRKHOSVWXGHQWV
¿QGWKHK\SRWKHVLVRIWKHSUHYLRXVVWDWHPHQW³,ILWLV
UDLQLQJ«´LVWKHK\SRWKHVLVLQWKHFRQGLWLRQDOVWDWHPHQW³,ILWLVUDLQLQJWKHQWKH¿HOGLVZHW´
conclusion
&RQFOXVLRQPHDQVWKHODVWSDUWRIDQ\WKLQJWKHWHUPLQDWLRQRUWKH
end. It also means a reasoned deduction or inference. In geometry
SURRIVDFRQFOXVLRQLVWKHSDUWRIDQ³LIWKHQ´FRQGLWLRQDOVWDWHPHQWWKDWFRPHVDIWHU³WKHQ´$VNVWXGHQWVLIWKH\NQRZWKHFRQFOXVLRQIRUWKHFRQGLWLRQDOVWDWHPHQW³,ILWLVUDLQLQJWKHQWKH¿HOGLV
ZHW´DQGVKRZWKHSLFWXUH
converse
7KHFRQYHUVHRIDQ³LI±WKHQ´FRQGLWLRQDOVWDWHPHQWLV
WKHVWDWHPHQWWKDWUHVXOWVZKHQWKHWZRSDUWVK\SRWKHVLVDQGFRQFOXVLRQDUHVZLWFKHG7KHFRQYHUVHRI
³,ILWLVUDLQLQJWKHQWKH¿HOGLVZHW´LV³,IWKH¿HOGLV
ZHWWKHQLWLVUDLQLQJ´
Show students the picture of the switch to help them remember that in the conYHUVHRIDVWDWHPHQWWKHSDUWVDUHVZLWFKHG
—
159 —
Introduction of Math Vocabulary
negation
To negate something means to rule it out or deny it. In
JHRPHWU\SURRIVDQHJDWLRQLVDGHQLDORUDQRSSRVLWHVWDWHPHQWRIWHQFUHDWHGE\LQVHUWLQJWKHZRUG³QRW´)RUH[DPSOH
³,WLVQRWUDLQLQJ´LVWKHQHJDWLRQRI³,WLVUDLQLQJ´
inverse
,QYHUVHPHDQVUHYHUVHGLQSRVLWLRQRUGHURUGLUHFWLRQ,QJHRPHWU\
SURRIVWKHLQYHUVHRIDFRQGLWLRQDO³LIWKHQ´VWDWHPHQWLVWKHVWDWHPHQWWKDWUHVXOWVZKHQWKH³LI´SDUWK\SRWKHVLVDQGWKH³WKHQ´SDUWDUH
ERWKQHJDWHG)RUH[DPSOHWKHLQYHUVHRI³,ILWLVUDLQLQJWKHQWKH¿HOG
LVZHW´ZRXOGEH³,ILWLVQRWUDLQLQJWKHQWKH¿HOGLVQRWZHW´
,QWKHSLFWXUHWKHVQRZERDUGLVWXUQHGWRWKHRSSRVLWHVLGHWRUHSUHsent the idea that you would write opposite statements when you negate both
the hypothesis and the conclusion.
contrapositive
$FRQWUDSRVLWLYHLVDVWDWHPHQWWKDWUHVXOWVZKHQWKHWZR
SDUWVK\SRWKHVLVDQGFRQFOXVLRQRIDQ³LIWKHQ´FRQGLWLRQDO
VWDWHPHQWDUHVZLWFKHGDQGERWKDUHQHJDWHG)RUH[DPSOH
LIDFRQGLWLRQDOVWDWHPHQWVD\V³,ILWLVUDLQLQJWKHQWKH¿HOGLV
ZHW´LWVFRQWUDSRVLWLYHZRXOGEH³,IWKH¿HOGLVQRWZHWWKHQLW
LVQRWUDLQLQJ´
7KHSLFWXUHVKRZVVRPHWKLQJWKDWLVERWKXSVLGHGRZQDQGEDFNZDUGVWRUHSresent a contrapositive; because in a contrapositive you both switch the order of
statements and create their opposites.
—
160 —
Introduction of Math Vocabulary
conjecture
$FRQMHFWXUHLVDVWDWHPHQWRURSLQLRQWKDWLVQRWEDVHGRQHYLGHQFH,WLVDQHGXFDWHGJXHVV6KDUHVRPHH[DPSOHVRIFRQjectures:
³,WZLOOUDLQQH[WZHHN´
³+DOLEXWWDVWHVEHWWHUWKDQVDOPRQWRPRVWSHRSOH´
³7RXULVWVDUHJRRGIRURXUWRZQ´
counterexample
$FRXQWHUH[DPSOHLVDQH[DPSOHWKDWSURYHVDVWDWHPHQWWREH
IDOVH)RULQVWDQFHWKHH[DPSOH³7KHUHLVDFHGDUWUHHLQP\
\DUG´SURYHVWKDWWKHVWDWHPHQW³$OOWUHHVLQ6RXWKHDVW$ODVNDDUH
KHPORFNV´FDQQRWEHWUXH,WLVDFRXQWHUH[DPSOH$VVXPLQJRI
FRXUVHWKDWWKH\DUGLVLQ6RXWKHDVW$ODVND
7KHSLFWXUHVKRZVDFRXQWHUH[DPSOHRIWKHVWDWHPHQW³$OOVZDQVDUHZKLWH´
2UPD\EH³$OOVZDQVDUHEODFN´
—
161 —
Introduction of Math Vocabulary
deductive reasoning
Deductive reasoning is a form of thinking that moves from the general to the
SDUWLFXODU,QGHGXFWLYHDUJXPHQWVLIWKH¿UVWVWDWHPHQWWKHSUHPLVHRUK\SRWKHVLVLVWUXHWKHFRQFOXVLRQ0867EHWUXH$UJXPHQWVEDVHGRQODZVUXOHVRU
RWKHUZLGHO\DFFHSWHGSULQFLSOHVDUHEHVWH[SUHVVHGGHGXFWLYHO\+HUHDUHDIHZ
H[DPSOHVRIGHGXFWLYHUHDVRQLQJ
1HZWRQ¶V/DZVD\VWKDWHYHU\WKLQJWKDWJRHVXSPXVWFRPHGRZQDJHQHUDOVWDWHPHQWVRLI,WKURZWKLVEDOOLQWRWKHDLULWZLOOFRPHGRZQDSDUWLFXODUVLWXDWLRQ
$ODVNDQUHVLGHQWVDUHUHVLGHQWVRIWKH8QLWHG6WDWHVDJHQHUDOUXOHRU
GH¿QLWLRQVRP\PRPLVDUHVLGHQWRIWKH8QLWHG6WDWHVDSDUWLFXODU
H[DPSOH
$OOEHDUVDUHPDPPDOVDUXOH$OOPDPPDOVKDYHOXQJVDUXOH6R
EHDUVPXVWKDYHOXQJVDVSHFL¿FH[DPSOH
The picture of the gavel represents the idea that deductive
DUJXPHQWVVWDUWZLWKODZVUXOHVDQGDFFHSWHGSULQFLSOHV
inductive reasoning
Inductive reasoning is the opposite of deductive reasoning. It is a form of thinkLQJWKDWPRYHVIURPWKHVSHFL¿FWRWKHJHQHUDO*HQHUDOL]DWLRQVDUHPDGH
EDVHGRQLQGLYLGXDOLQVWDQFHV,QLQGXFWLYHUHDVRQLQJVWDWHPHQWVDUHPDGH
that support a conclusion but that do not automatically insure that it will be true.
,IWKHVWDWHPHQWVDUHWUXHWKHQWKHFRQFOXVLRQLV3266,%/<WUXH$UJXPHQWV
EDVHGRQH[SHULHQFHRUREVHUYDWLRQVDUHEHVWH[SUHVVHGLQGXFWLYHO\+HUHDUHD
IHZH[DPSOHVRILQGXFWLYHUHDVRQLQJ
7KHODVWWKUHHWLPHVWKDW,WKUHZDEDOOLQWRWKHDLULWFDPHGRZQDJDLQ
6RLI,WKURZDEDOOLQWKHDLUQRZLWZLOOFRPHGRZQDJDLQ
—
162 —
Introduction of Math Vocabulary
0\PRPLVDUHVLGHQWRIWKH8QLWHG6WDWHVDQGVRDP,VRDOO$ODVNDQ
residents are residents of the United States.
(YHU\EHDUZHKDYHVHHQLVEODFNVRWKHQH[WEHDUZHVHHZLOOEHEODFN
7KLVSLFWXUHRIDSHUVRQREVHUYLQJEHDUVH[SUHVVHVWKHLGHDWKDW
LQGXFWLYHUHDVRQLQJEHJLQVZLWKREVHUYDWLRQVDQGH[SHULHQFHV
proof
$SURRILQJHRPHWU\LVDGHPRQVWUDWLRQRIWKHWUXWKRID
mathematical or logical statement based on postulates
DQGWKHRUHPV,QDSURRIDVHTXHQFHRIVWHSVVWDWHPHQWVRUGHPRQVWUDWLRQVWKDWOHDGVWRDYDOLGFRQFOXsion.
postulate
$SRVWXODWHLVDVWDWHPHQWDFFHSWHGDVWUXHZLWKRXWSURRI
$SRVWXODWHVKRXOGEHVRVLPSOHDQGGLUHFWWKDWLWVHHPVWR
EHXQTXHVWLRQDEO\WUXH([DPSOHVRISRVWXODWHVXVHGLQ
geometry are:
³7KURXJKDQ\WZRSRLQWVWKHUHLVH[DFWO\RQHOLQH´2U³$
FLUFOHFDQEHGUDZQZLWKDFHQWHUDQGDQ\UDGLXV´
6KRZWKHSLFWXUHDQGWHOOVWXGHQWV³<RXPLJKWQRWUHDOO\TXHVWLRQWKLVPDQKHLV
H[SUHVVLQJKLPVHOILQDYHU\VLPSOHDQGGLUHFWZD\´
—
163 —
Introduction of Math Vocabulary
theorem
Theorem is a mathematical statement that can be proved true
XVLQJWKHUXOHVRIORJLF$WKHRUHPLVSURYHQIURPSURSHUWLHV
SRVWXODWHVRURWKHUWKHRUHPVDOUHDG\NQRZQWREHWUXH
7KLVSLFWXUHRIDVLJQUHSUHVHQWV³WKHRUHP´EHFDXVHWKHRUHPV
are statements that have been proven according to rules.
corollary
$FRUROODU\LVDQDWXUDOFRQVHTXHQFHRUHDVLO\GUDZQFRQFOXVLRQ
,QJHRPHWU\LWLVDWKHRUHPRUSURSRVLWLRQWKDWIROORZVZLWKOLWWOH
RUQRSURRIUHTXLUHGIURPRQHDOUHDG\SURYHQ$VSHFLDOFDVHRID
more general theorem which is worth noting separately.
The picture represents a corollary: If a person eats a lot of fat-ladHQIRRGDQDWXUDOFRQVHTXHQFHZRXOGEHWKDWWKH\JDLQZHLJKW
indirect proof
$QLQGLUHFWSURRILVSURRIE\FRQWUDGLFWLRQ$VWDWHPHQWFRQMHFWXUHLVSURYHGE\
assuming that the conjecture is false. If this assumption leads to a
FRQWUDGLFWLRQVRPHWKLQJDEVXUGLWVKRZVWKDWWKHDVVXPHGIDOVH
conjecture is impossible. Therefore the original statement must have
EHHQWUXH,QDQLQGLUHFWSURRIDOORIWKHDOWHUQDWLYHVDUHUXOHGRXW
)RUH[DPSOHLPDJLQHWKDW-RKQ-RH6XHDQG7HUU\DUHWKHRQO\
people on an isolated island and Joe has been shot with an arrow.
6XHPDNHVDFRQMHFWXUHWKDW7HUU\ZDVWKHVKRRWHU7RSURYHLW¿UVWVKH
assumes that the conjecture is false: Terry was not the shooter. Joe could not
KDYHVKRWKLPVHOIDQG6XHNQHZWKDWVKHGLGQRWVKRRWKLP6RLWKDGWREH
John or Terry. John has a broken arm and can’t shoot a bow. That contradicts
the idea that he was the shooter. The assumed false conjecture that Terry was
QRWWKHVKRRWHULVQRZLPSRVVLEOH6R7HUU\PXVWKDYHEHHQWKHVKRRWHU
7KHSLFWXUHVKRZVD\RXQJPDQZKRLVWXUQHGDURXQGDQGEDFNZDUGVVRLW
might represent an indirect method of proof; a method that starts with an opposite conjecture.
—
164 —
Introduction of Math Vocabulary
verify
7RYHULI\VRPHWKLQJPHDQVWRWHVWDQGFRQ¿UPLWVWUXWK,QPDWKLWLVWKHSURFHVVRIFRQ¿UPLQJWKDWDVROXWLRQLVFRUUHFWE\PDNLQJVXUHLWVDWLV¿HVDQ\DQG
DOORIWKHFRQGLWLRQVHTXDWLRQVDQGRULQHTXDOLWLHVLQDSUREOHP
summarize
7RJLYHDFRQFLVHFRPSUHKHQVLYHVWDWHPHQWRUDQ
DEULGJHGDFFRXQWRIVRPHWKLQJ$VXPPDU\FRQtains the important facts and main points without all
of the details.
$VXPPDU\LVVKRUWHUDQG³VPDOOHU´OLNHWKHOLWWOH
dog.
—
165 —
—
166 —
Language and Skills
Development
Using the Math Vocabulary Terms
Language & Skills Development
LISTENING
Use the activity pages
from the Student
Support Materials.
SPEAKING
READING
Use the activity pages
from the Student
Support Materials.
WRITING
Use the activity pages
from the Student
Support Materials.
The Hidden Words
Say a vocabulary word for the students. Tell the students to listen for that
vocabulary word as you say a running story. Provide each student with writing paper and a pen. When the students hear the vocabulary word in the runQLQJVWRU\WKH\PXVWPDNHDFKHFNPDUNRQWKHLUSDSHUVHDFKWLPHWKHZRUG
RFFXUV'HSHQGLQJXSRQWKHUHDGLQHVVRI\RXUVWXGHQWV\RXPD\ZLVKWRKDYH
WKHPOLVWHQIRUWZRRUWKUHHZRUGV,QWKLVFDVHKDYHWKHVWXGHQWVPDNHD
FKHFNPDUNIRURQHZRUGDQGD³;´DQGDQ³2´IRUWKHRWKHUZRUGV
What’s the Date?
%HIRUHWKHDFWLYLW\EHJLQVFROOHFWDQROGFDOHQGDURUFDOHQGDUVRIGLIIHUHQW\HDUV
Say the name of a month to a student. The student should then say a date within
that month. Look on the calendar to see which day the date represents. If the
GDWHUHSUHVHQWVDGD\EHWZHHQ0RQGD\DQG)ULGD\WKHVWXGHQWVVKRXOGLGHQtify a vocabulary illustration you show or he/she should repeat a sentence you
VDLGDWWKHEHJLQQLQJRIWKHURXQG+RZHYHULIWKHGDWHQDPHGE\WKHVWXGHQW
LVD6DWXUGD\RU6XQGD\WKHVWXGHQWPD\³SDVV´WRDQRWKHUSOD\HU5HSHDWXQWLO
many students have responded.
The Lost Syllable
6D\DV\OODEOHIURPRQHRIWKHVLJKWZRUGV&DOOXSRQWKHVWXGHQWVWRLGHQWLI\WKH
VLJKWZRUGRUZRUGVWKDWFRQWDLQWKDWV\OODEOH'HSHQGLQJXSRQWKHV\OODEOH\RX
VD\PRUHWKDQRQHVLJKWZRUGPD\EHWKHFRUUHFWDQVZHU7KLVDFWLYLW\PD\DOVR
EHGRQHLQWHDPIRUP,QWKLVFDVHOD\WKHVLJKWZRUGFDUGVRQWKHÀRRU*URXS
the students into two teams. Say a syllable from one of the sight words. When
\RXVD\³*R´WKH¿UVWSOD\HULQHDFKWHDPPXVWUXVKWRWKHVLJKWZRUGFDUGVDQG
¿QGWKHVLJKWZRUGWKDWFRQWDLQVWKHV\OODEOH\RXVDLG
The Other Half
&XWHDFKRIWKHVLJKWZRUGVLQKDOI*LYHHDFKVWXGHQWDVKHHWRIZULWLQJSDSHUD
pen and one of the word-halves. Each student should glue the word-half on his/
her writing paper and then complete the spelling of the word. You may wish to
have enough word-halves prepared so that each student completes more than
RQHZRUG$IWHUZDUGVUHYLHZWKHVWXGHQWV¶UHVSRQVHV
—
169 —
Student Support
Materials
—
173 —
—
175 —
—
177 —
—
179 —
—
181 —
—
183 —
—
185 —
—
187 —
—
189 —
—
191 —
—
193 —
—
195 —
—
197 —
—
199 —
—
201 —
—
203 —
—
205 —
—
207 —
—
208 —
True-False Sentences
(Listening and/or Reading Comprehension)
1. ³,IWRPRUURZLV0RQGD\´FRXOGEHDQH[DPSOHRIDconclusion.
2. $conditional statementDOZD\VVWDUWVZLWK³LI´
³,WZLOOWDNHPLQXWHVWRZDONWRVFKRRO´LVDQH[DPSOHRIDconjecture.
$contrapositiveLVFUHDWHGE\QHJDWLQJWKH³LI´DQG³WKHQ´SDUWVRIDVWDWHPHQWDQGVZLWFKLQJ
their order.
To create the converseRIDVWDWHPHQW\RXQHJDWHERWKSDUWV
$ÀRDWLQJFDQRHLVDcounterexampleRIWKHVWDWHPHQW³DOOERDWVÀRDW´
7. $QH[DPSOHRIdeductive reasoningPLJKWEH³,WUDLQHGIRUWKHODVWGD\VVRLWZLOOUDLQ
WRPRUURZ´
8. Inductive reasoning LQYROYHVGUDZLQJFRQFOXVLRQVIURPREVHUYDWLRQVDQGH[SHULHQFHV
9. To write the inverseRI³,ILWVQRZVLWLVFROG´\RXZRXOGVD\³,ILWVQRZVLWLVQRWFROG´
10. To negateVRPHWKLQJ\RXKDYHWRSURYHWKDWLWLVIDOVH
11. $proof is a demonstration of the truth of a statement.
12. $VWDWHPHQWWKDWLVDFFHSWHGDVWUXHZLWKRXWSURRILVDpostulate.
$theorem is a statement that has been proven according to rules of logic.
$corollary to a theorem is a special case of that theorem.
No assumptions are made as part of an indirect proof.
It is possible to verify every postulate in geometry.
17. When something is summarizedLWLVGHVFULEHGLQDFRQFLVHZD\
,QVFLHQFHWKHZRUGhypothesisKDVH[DFWO\WKHVDPHPHDQLQJWKDWLWGRHVLQJHRPHWU\
$QVZHUV)777)777))7777))7)
1.
2.
$conclusion always comes at the end of a conditional statement.
$conditional statement is never true.
$conjecture is usually incorrect.
The contrapositiveRI³,I,JRWKHQ,ZLOOVWD\´ZRXOGEH³,I,VWD\WKHQ,GRQRWJR´
³,ILWLVEOXHWKHQLWLVQRWUHG´LVWKHconverseRI³,ILWLVUHGWKHQLWLVQRWEOXH´
$counterexampleVKRZVWKDWVRPHWKLQJFDQQRWEHWUXHE\JLYLQJDQH[DPSOHRIVRPHWKLQJ
WKDWGRHVQ¶W¿WWKHVWDWHPHQW
7. In deductive reasoning, DQDUJXPHQWVWDUWVZLWKDJHQHUDOUXOHRUODZDQGDSSOLHVWKDWWRD
VSHFL¿FVLWXDWLRQ
,I\RXVDLG³7KHOHJDOVSHHGOLPLWLVPSKVRGULYLQJDWPSKLVOHJDO´\RXZRXOGEHXVLQJ
inductive reasoning.
9. The inverse of a conditional statement is formed by negating both parts of the statement.
10. ³,DPQRWKDSS\´LVWKHnegationRI³,DPKDSS\´
11. In a proof\RXFDQ¶WXVHWKHRUHPVWKDWKDYHDOUHDG\EHHQSURYHQ
12. $QH[DPSOHRIDpostulatePLJKWEH³$OOJHRPHWU\VWXGHQWVDUHVPDUWDQGJRRGORRNLQJ´
Every theorem automatically has a corollary.
$FRQMHFWXUHDQGDtheorem are the same thing.
In an indirect proofVWDWHPHQWVDUHSURYHGE\VKRZLQJWKDWWKHRSSRVLWHRIWKHVWDWHPHQW
creates a contradiction.
When you verifyVRPHWKLQJ\RXWHVWDQGFKHFNLWWRFRQ¿UPWKDWLWLVDFFXUDWH
17. 7RVXPPDUL]HVRPHWKLQJ\RXQHHGWRDGGH[WUDLQIRUPDWLRQ
$hypothesisLVWKH¿UVWSDUWRIDQ³LIWKHQ´VWDWHPHQW
$QVZHUV7)))777)77))))77
—
209 —
Match the Halves
$FRQFOXVLRQLV
$:ULWLQJDFRQFLVHDEULGJHGDFFRXQW
$FRQGLWLRQDOVWDWHPHQW
$QHGXFDWHGJXHVVRUDQRSLQLRQPLJKW
be called
%$WKHRUHP
&6KRZLQJWKDWWKHUHLVDFRQWUDGLFWLRQZKHQ
you assume that it is false.
$K\SRWKHVLVLV
',QVHUWLQJWKHZRUG³QRW´
+HVXPPDUL]HGWKHSURFHVVE\
E. The last part of a conditional statement
:KHQ&DOYLQFKHFNHGDQGFRQ¿UPHGWKDW
his proof was correct he was
)$SRVWXODWH
7. Mildred demonstrated the truth of the
statement by
G. The inverse of the statement is created.
$VLPSOHGLUHFWVWDWHPHQWDVVXPHGWREH
true is
H. Writing a proof
$VWDWHPHQWWKDWKDVEHHQSURYHQXVLQJ
VSHFL¿FUXOHVLV
I. The contrapositive of the statement is
created.
$QLQGLUHFWSURRIVKRZVWKDWVRPHWKLQJLV -,VDVWDWHPHQWWKDWIROORZVDQ³LIWKHQ´
true by
format.
$QDWXUDOFRQVHTXHQFHRUVSHFLDOFDVHLV
.,VDQH[DPSOHRIGHGXFWLYHUHDVRQLQJ
$VWDWHPHQWPLJKWEHQHJDWHGE\
L. Verifying his work
:KHQWKHSDUWVRIDFRQGLWLRQDOVWDWHPHQW M. Shows that a statement is false.
are switched
:KHQWKHSDUWVRIDFRQGLWLRQDOVWDWHPHQW 1,VDQH[DPSOHRILQGXFWLYHUHDVRQLQJ
are both negated
:KHQWKHSDUWVRIDFRQGLWLRQDOVWDWHPHQW 2$FRQMHFWXUH
are switched and both are negated
$QDUJXPHQWWKDWVWDUWVZLWKUXOHVRUODZV 3$FRUROODU\
DQGDSSOLHVWKHPWRDVSHFL¿FVLWXDWLRQ
$QDUJXPHQWWKDWJHQHUDOL]HVIURP
REVHUYDWLRQVDQGH[SHULHQFHV
Q. The converse of the statement is created.
$FRXQWHUH[DPSOH
57KH¿UVWSDUWRIDFRQGLWLRQDOVWDWHPHQW
$QVZHUV(-25$/+)%&3'4*,.10
—
210 —
'H¿QLWLRQV
conditional statement: WKHFRPELQDWLRQRIWZRVWDWHPHQWVLQDQ³LIWKHQ´VWUXFWXUH
hypothesis:WKH¿UVWSDUWRUWKH³LI´SDUWRIDQ³LIWKHQ´VWDWHPHQW
conclusion:WKHSDUWRIDQ³LIWKHQ´FRQGLWLRQDOVWDWHPHQWWKDWFRPHVDIWHU³WKHQ´
converse:WKHVWDWHPHQWWKDWUHVXOWVZKHQWKHWZRSDUWVK\SRWKHVLVDQGFRQFOXVLRQRI
DQ³LIWKHQ´VWDWHPHQWDUHVZLWFKHG
negation:DGHQLDORIWHQFUHDWHGE\LQVHUWLQJRUUHPRYLQJWKHZRUG³QRW´
inverse:WKHVWDWHPHQWWKDWUHVXOWVZKHQWKH³LI´SDUWK\SRWKHVLVDQGWKH³WKHQ´SDUW
of a conditional statement are both negated.
contrapositive:DVWDWHPHQWWKDWUHVXOWVZKHQWKHWZRSDUWVK\SRWKHVLVDQGFRQFOXVLRQRIDQ³LIWKHQ´FRQGLWLRQDOVWDWHPHQWDUHVZLWFKHGDQGERWKDUHQHJDWHG
conjecture: a statement or opinion that is not based on evidence; an educated
guess.
counterexample:DQH[DPSOHWKDWSURYHVDVWDWHPHQWWREHIDOVH
deductive reasoning: a form of thinking that starts with general rules and applies
WKHPWRSDUWLFXODURUVSHFL¿FVLWXDWLRQV
inductive reasoning:DIRUPRIWKLQNLQJWKDWXVHVVSHFL¿FREVHUYDWLRQVDQGH[SHULences to reach general conclusions.
proof: a demonstration of the truth of a mathematical or logical statement based on
SRVWXODWHVDQGWKHRUHPV,QDSURRIDVHTXHQFHRIVWHSVVWDWHPHQWVRUGHPRQVWUDtions that leads to a valid conclusion.
postulate: a statement accepted as true without proof.
theorem: DPDWKHPDWLFDOVWDWHPHQWWKDWFDQEHSURYHGWUXHXVLQJWKHUXOHVRIORJLF$
WKHRUHPLVSURYHQIURPSURSHUWLHVSRVWXODWHVDQGRURWKHUWKHRUHPVDOUHDG\NQRZQWR
be true.
corollary: DQDWXUDOFRQVHTXHQFHRUHDVLO\GUDZQFRQFOXVLRQ,QJHRPHWU\LWLVDWKHRrem or proposition that follows with little or no proof required from one already proven.
$VSHFLDOFDVHRIDPRUHJHQHUDOWKHRUHPZKLFKLVZRUWKQRWLQJVHSDUDWHO\
indirect proof: SURRIE\FRQWUDGLFWLRQLQZKLFKDVWDWHPHQWFRQMHFWXUHLVSURYHGE\
¿UVWDVVXPLQJWKDWWKHFRQMHFWXUHLVIDOVH
verify: WRWHVWDQGFRQ¿UPWKHWUXWKRIVRPHWKLQJ
summarize:WRJLYHDFRQFLVHFRPSUHKHQVLYHVWDWHPHQWRUDQDEULGJHGDFFRXQWRI
VRPHWKLQJ$VXPPDU\FRQWDLQVWKHLPSRUWDQWIDFWVDQGPDLQSRLQWVZLWKRXWDOORIWKH
details.
—
211 —
Which Belongs
1. ³,I,GRQ¶WKDYHP\VRFNVRQWKHQP\IHHWDUHQRWZDUP´ZRXOGEHWKHFRQWUDSRVLWLYHFRQYHUVHLQYHUVH
RI³,I,KDYHP\VRFNVRQWKHQP\IHHWDUHZDUP´
2. 7KHK\SRWKHVLVFRQFOXVLRQFRUROODU\LVWKHODVWSDUWRIDFRQGLWLRQDOVWDWHPHQW
5DFKHOSURYHGKHUVWDWHPHQWDERXWDQJOHVE\XVLQJSRVWXODWHVDQGRWKHUSURYHQVWDWHPHQWVVRVKH
FRXOGVD\WKDWKHUVWDWHPHQWZDVDFRQMHFWXUHWKHRUHPFRQGLWLRQDOVWDWHPHQW
7KHVWDWHPHQW³7KHGDQFHZLOOEHFURZGHG´FDQQRWEHDFRQMHFWXUHWUXHVWDWHPHQWFRQGLWLRQDOVWDWHPHQW
³,ILWLVQRWKRWWKHQLWLVQRWFRRNHG´LVWKHLQYHUVHFRQYHUVHFRQWUDSRVLWLYHRI³,ILWLVFRRNHGWKHQLWLV
KRW´
$³EOXHEHDU´LVDQHJDWLRQFRXQWHUH[DPSOHSURRIRIWKHVWDWHPHQW³$OOEODFNEHDUVDUHEODFNLQFRORU´
7. 7RVXPPDUL]HYHULI\QHJDWHWKHVWHSVWKDWVKHXVHG%HWKZURWHWKHPLQDVKRUWHUPRUHFRQFLVH
manner.
³$OLQHKDVDQLQ¿QLWHQXPEHURISRLQWV´ZRXOGEHDQH[DPSOHRIDFRQMHFWXUHSRVWXODWHWKHRUHP
9. 'HGXFWLYHUHDVRQLQJLQGXFWLYHUHDVRQLQJLQGLUHFWSURRILVXVHGLQWKHH[SODQDWLRQ:DWHUIUHH]HVZKHQ
WKHWHPSHUDWXUHLVEHORZo)6RLI,OHDYHP\GRJ¶VZDWHUGLVKRXWVLGHDWo)WKHZDWHULQLWZLOO
freeze.
10. :KHQ)UHGSDFNHGKLVUDLQJHDUDQGERRWVIRUWKHFDPSLQJWULSKHZDVXVLQJDFRQMHFWXUHSRVWXODWH
WKHRUHPDERXWWKHZHDWKHU
11. :KHQ(WKDQVD\V³(YHU\WLPH,JR¿VKLQJ,FDWFKD¿VKVR,ZLOOFDWFKD¿VKWRGD\´KHLVXVLQJGHGXFWLYHUHDVRQLQJLQGXFWLYHUHDVRQLQJDFRXQWHUH[DPSOH
12. 7RSURYHWKDWLWZDVVQRZLQJ.LP¿UVWDVVXPHGWKDWLWZDVQRWVQRZLQJWKHQVKRZHGWKDWWKHUHZDV
DFRQWUDGLFWLRQWRWKDWVQRZÀDNHVZHUHIDOOLQJIURPWKHVN\DQGFRYHULQJWKHJURXQG6KHZDVXVLQJ
GHGXFWLYHUHDVRQLQJLQGXFWLYHUHDVRQLQJLQGLUHFWSURRI
:KHQ-XOLHVDLGWKDWKHUKRPHZRUNZDVQRWGRQHVKHZDVSURYLQJFRQMHFWXULQJQHJDWLQJKHUIRUPHU
VWDWHPHQWWKDWKHUKRPHZRUNZDV¿QLVKHG
:KHQ:DOWHUFRQ¿UPHGWKDWKLVSURRIZDVFRUUHFWE\WHVWLQJDQGFKHFNLQJLWKHZDVYHULI\LQJVXPPDUL]LQJFRQFOXGLQJWKHSURRI
³,IWKHZLQGLVEORZLQJWKHQWKHUHDUHZKLWHFDSVLVWKHFRQYHUVHLQYHUVHFRQWUDSRVLWLYHRI³,IWKHUHDUH
ZKLWHFDSVWKHQWKHZLQGLVEORZLQJ´
7RGHPRQVWUDWHWKDWWKHVWDWHPHQW³YHUWLFDODQJOHVDUHDOZD\VFRQJUXHQW´ZDVWUXH$OOHQZURWHDWKHRUHPFRUROODU\SURRI
17. $VSHFLDOFDVHWKDWRFFXUVDVWKHFRQVHTXHQFHRIDSURYHQWKHRUHPLVWKHFRXQWHUH[DPSOHFRUROODU\
FRQYHUVHRIWKHWKHRUHP
7KHVWDWHPHQW³,ILWLVQHZWKHQLWLVXQRSHQHG´LVDFRQGLWLRQDOFRXQWHUH[DPSOHK\SRWKHVLV
1. Inverse
2. &RQFOXVLRQ
Theorem
&RQGLWLRQDOVWDWHPHQW
&RQWUDSRVLWLYH
&RXQWHUH[DPSOH
7. Summarize
Postulate
9. Deductive reasoning
10. &RQMHFWXUH
11. Inductive reasoning
12. Indirect proof
Negating
Verifying
&RQYHUVH
Proof
17. &RUROODU\
Hypothesis
—
212 —
Multiple Choice
1. The conclusion to a conditional statement
DLPPHGLDWHO\IROORZVWKH³LI´SDUWRIWKHVWDWHPHQW
EFRPHVDWWKHEHJLQQLQJRIWKHVWDWHPHQW
FLVQRWQHFHVVDULO\WUXH
$FRQGLWLRQDOVWDWHPHQWDOZD\VQHHGVWRKDYHZKLFKWZRSDUWV
DDK\SRWKHVLVDQGDFRQFOXVLRQ
EDFRQMHFWXUHDQGDQHJDWLRQ
FDK\SRWKHVLVDQGDQHJDWLRQ
:KHQ0DUNPDGHDFRQMHFWXUHDERXWWKHRXWFRPHRIWRPRUURZ¶VEDVNHWEDOO
game
DKHZDVJXHVVLQJEDVHGRQKLVSDVWREVHUYDWLRQVDQGH[SHULHQFHV
EKHKDGDOUHDG\SURYHQWKDWLWZRXOGEHWUXH
FKHZDVPDNLQJDFRQGLWLRQDOVWDWHPHQW
:KHQDSHUVRQVD\V³,ISLJVFRXOGÀ\«´WKH\FRXOGEHVD\LQJ
DDFRXQWHUH[DPSOH
EDK\SRWKHVLV
FDFRQMHFWXUH
7KHFRQWUDSRVLWLYHRI³,I,DPHDUQLQJHQRXJKPRQH\WKHQ,DPJRLQJWR
6NDJZD\´LV
D,I,DPJRLQJWR6NDJZD\WKHQ,DPHDUQLQJHQRXJKPRQH\
E,I,DPQRWJRLQJWR6NDJZD\WKHQ,DPQRWHDUQLQJHQRXJKPRQH\
F,I,DPQRWHDUQLQJHQRXJKPRQH\WKHQ,DPQRWJRLQJWR6NDJZD\
7KHFRQYHUVHRI³,ILWLVVQRZLQJWKHQWKH(DJOHFUHVWVNLDUHDLVRSHQ´LV
D,IWKH(DJOHFUHVWVNLDUHDLVRSHQWKHQLWLVVQRZLQJ
E,ILWLVQRWVQRZLQJWKHQWKH(DJOHFUHVWVNLDUHDLVQRWRSHQ
F,IWKH(DJOHFUHVWVNLDUHDLVQRWRSHQWKHQLWLVQRWVQRZLQJ
:KHQ&KULVWRSKHUPDGHWKHVWDWHPHQW³$OOSHRSOHLQ$ODVNDOLNHVQRZ´
5HEHFFDJDYHDFRXQWHUH[DPSOHE\VD\LQJ
D3HRSOHLQ$ODVNDOLNHVQRZEHFDXVHLWLVEHDXWLIXODQGWKH\FDQJR
sledding.
E0\DXQWOLYHVLQ&RORUDGRDQGVKHORYHVWKHVQRZ
F,OLYHLQ$ODVNDDQG,KDWHVQRZ
:KHQ\RXDUHXVLQJGHGXFWLYHUHDVRQLQJ\RXPLJKW
DEHJLQE\VWDWLQJDSURYHQIDFW
EJHQHUDOL]HEDVHGRQDOORI\RXUH[SHULHQFHV
FPDNHFRQMHFWXUHVWREHJLQSURYLQJVRPHWKLQJ
—
213 —
,QLQGXFWLYHUHDVRQLQJ
D\RXVWDUWZLWKJHQHUDOVWDWHPHQWVDQGHQGZLWKVSHFL¿FSDUWLFXODUH[DPSOHV
E\RXUFRQFOXVLRQLVSRVVLEO\WUXHEXWQRWDEVROXWHO\FHUWDLQ
F\RXSURYHVRPHWKLQJE\FRQWUDGLFWLRQ
7KHLQYHUVHRIWKHVWDWHPHQW³,ILWLVDIWHUSPWKHQVFKRROLVRXW´LV
D³,IVFKRROLVQRWRXWWKHQLWLVQRWDIWHUSP´
E³,IVFKRROLVRXWWKHQLWLVDIWHUSP´
F³,ILWLVQRWDIWHUSPWKHQVFKRROLVQRWRXW´
7RQHJDWHWKHVWDWHPHQW³6XPPHULVKHUH´3KLOZURWH
D,WLVZLQWHUQRZ
E6XPPHUEHJLQVRQ-XQH
F6XPPHULVQRWKHUH
:KHQ\RXDUHZULWLQJDSURRI\RXKDYHWR
DEDVH\RXUVWDWHPHQWVRQFRQMHFWXUHV
EXVHSRVWXODWHVDQGSURYHQIDFWV
FVXPPDUL]H\RXUZRUN
,IDPDWKHPDWLFDOVWDWHPHQWKDVEHHQSURYHQLWFRXOGEHD
DSRVWXODWH
EWKHRUHP
FFRQMHFWXUH
:KLFKRIWKHIROORZLQJLVQRWWUXHRIDFRUROODU\
DLWLVDQRSLQLRQRUDQHGXFDWHGJXHVV
ELWLVDVSHFLDOFDVHRIDWKHRUHPWKDWLVZRUWKQRWLQJ
FLWLVDQDWXUDOFRQVHTXHQFHRIDWKHRUHPWKDWKDVEHHQSURYHQ
:KLFKRIWKHIROORZLQJPLJKWEHSDUWRIDQLQGLUHFWSURRI
DDVVXPLQJWKDWDFRQMHFWXUHLVIDOVH
E¿QGLQJDFRQWUDGLFWLRQ
FERWKRIWKHDERYH
,WZRXOGEHDJRRGLGHDWRYHULI\\RXUZRUN
DRQO\LI\RXDUHZULWLQJDSURRI
ERQO\ZKHQWKHDUJXPHQWVWDUWHGZLWKDFRQMHFWXUH
FDQ\WLPHWKDW\RXFDUHDERXWEHLQJFRUUHFW
:KHQ\RXVXPPDUL]HVRPHWKLQJ\RXDUHZULWLQJLWLQDZD\WKDWLVPRUH
DGHWDLOHG
EFRQFLVH
FDFFXUDWH
$QH[DPSOHRIDSRVWXODWHPLJKWEH
D$OLQHKDVLQ¿QLWHO\PDQ\SRLQWV
E,IDOOGRJVEDUNWKHQP\GRJ2GLHEDUNV
F-RDQ3RLQGH[WHUZLOOZLQWKHHOHFWLRQ
$QVZHUV
1. &
2. $
$
B
B
$
7. &
$
9. B
10. $
11. &
12. B
—
B
$
&
&
214 —
17. B
$
Complete the Sentence
1. ,QDQBBBBBBBBBBBBBBBBBBBBBBBBBDVWDWHPHQWRUFRQMHFWXUHLVSURYHQE\FRQWUDGLFWLRQ
2. ³,I,JHWDQHZSDLURIVKRHVWKHQ,ZLOOUXQIDVWHU´LVDQH[DPSOHRIDBBBBBBBBBBBBBBBBBB
³,I,DPZRUNLQJWKHQ,DPTXLHW´LVWKHBBBBBBBBBBBBBBBBBBBRIWKHVWDWHPHQW³,I,DPTXLHWWKHQ,DP
ZRUNLQJ´
:KHQDVWDWHPHQWEHJLQVZLWKDQBBBBBBBBBBBBBBBBIROORZHGE\³WKHQ´LWLVQRWDOZD\VWUXH
BBBBBBBBBBBBBBBBBBBBBBBBBLVXVHGZKHQ\RXNQRZRIVRPHJHQHUDOUXOHVRUODZVWKDWDSSO\WRDVSHFL¿F
situation.
7KHBBBBBBBBBBBBBBBBBBBBLVWKH¿QDOSDUWRIDFRQGLWLRQDOVWDWHPHQW
7. ,I\RXPDNHDJHQHUDOL]DWLRQEDVHGRQ\RXUREVHUYDWLRQVDQGH[SHULHQFHV\RXDUHXVLQJ
____________________________.
$VSHFLDOFDVHRUQDWXUDOFRQVHTXHQFHRIVRPHWKLQJLVLWVBBBBBBBBBBBBBBB
9. :KHQDVWDWHPHQWVD\V³,ILWLVGDUNWKHQLWLVQLJKW´LWVBBBBBBBBBBBBBBBBZRXOGVD\³,ILWLVQRWGDUNWKHQ
LWLVQRWQLJKW´
10. 7RZULWHWKHBBBBBBBBBBBBBBBBBBBBBBBRIDVWDWHPHQW\RXGHQ\LWRIWHQE\DGGLQJWKHZRUG³QRW´
11. :KHQWKHRUGHURIDFRQGLWLRQDOVWDWHPHQWLVVZLWFKHGDQGERWKSDUWVDUHQHJDWHG\RXKDYHD
___________________________.
12. $GHPRQVWUDWLRQWKDWVRPHWKLQJLVWUXHLVDBBBBBBBBBBBBBBBBBB
:KHQ\RX¿QGDVLWXDWLRQRUDWKLQJWKDWGLVSURYHVVRPHWKLQJ\RXKDYHIRXQGDQBBBBBBBBBBBBBBBBBBBB
__________.
$QBBBBBBBBBBBBBBBBBBBBBBLVDFFHSWHGWREHWUXHHYHQWKRXJKLWFDQQRWEHSURYHQ
Suzanne _________________ her report because she knew that people would not have time to read the
whole thing.
$VWDWHPHQWWKDWKDVEHHQSURYHQWKURXJKDVHTXHQFHRIVWHSVXVLQJRWKHUWUXHVWDWHPHQWVLVD
___________________.
17. -DYLHUZDQWHGWRGRZHOORQWKHWHVWVRKHWRRNWKHWLPHWRBBBBBBBBBBBBBBBDOORIKLVDQVZHUV
)UDQNPDGHDQBBBBBBBBBBBBBBBZKHQKHVDLGWKDWWKHVWRUHZRXOGEHRSHQ
$QVZHUV
1. Indirect Proof
2. &RQGLWLRQDO6WDWHPHQW
&RQYHUVH
Hypothesis
Deductive
&RQFOXVLRQ
7. Inductive
&RUROODU\
9. Inverse
10. Negation
11. &RQWUDSRVLWLYH
12. Proof
&RXQWHUH[DPSOH
Postulate
Summarized
Theorem
17. Verify
—
215 —
Creative Writing
Write about this picture of a moose stuck in telephone wires using the words from this unit. You might try
VRPHFRQMHFWXUHVFRQGLWLRQDOVWDWHPHQWVDQGH[DPSOHVRIGHGXFWLYHDQGLQGXFWLYHUHDVRQLQJIRUVWDUWHUV
—
216 —
Place-Based Practice Activity
$VNVWXGHQWVWRZULWHFRQGLWLRQDOVWDWHPHQWVWKDWUHODWHWRWKHLUGDLO\OLYHV
DQGWKHHQYLURQPHQWDURXQGWKHP,QVPDOOJURXSVKDYHWKHVWXGHQWVH[FKDQJH
VWDWHPHQWVDQGSUDFWLFHFRPLQJXSZLWKWKHFRQYHUVHLQYHUVHDQGFRQWUDSRVLtive of each statement.
'LVFXVVWKHZD\VWKDWFRQMHFWXUHVLQGXFWLYHUHDVRQLQJGHGXFWLYHUHDVRQLQJ
and indirect proof might apply in students’ daily lives. Have students keep a log
RUUHFRUGRIH[DPSOHVWKDWFRPHXSGXULQJWKHQH[WZHHN7KH\PD\EHDEOHWR
¿QGH[DPSOHVLQFRQYHUVDWLRQZLWKIULHQGVRUIDPLO\PHPEHUVLQERRNVLQWHOHYLVLRQVKRZVRUFRPPHUFLDOVRULQFODVVHV2IIHULQFHQWLYHVIRU¿QGLQJH[DPSOHV
DQGSURYLGHFODVVWLPHIRUVWXGHQWVWRVKDUHWKHH[DPSOHVWKDWWKH\IRXQG
5HVHDUFKWKHZD\VWKDW1DWLYHSHRSOHLQ6RXWKHDVW$ODVNDGHYHORSHG
knowledge about the world around them by using inductive reasoning.
—
217 —
—
218 —
Unit Assessment
—
219
9 —
—
220 —
Geometry: Unit 3 Proofs
Name: ___________________
Date: ___________________
1) "If it is raining, then the field is wet" is a/an _______________.
a) hypothesis
b) conditional statement
c) conclusion
2) The first part statement, "If it is raining..." is the ________________ .
a) hypothesis
b) conditional statement
c) conclusion
3) In the same statement, the part of the sentence that states "...the field is wet" is the
_____________.
a) hypothesis
b) conditional statement
c) conclusion
Multiple Choice: Read the statement carefully and select the best choice for your answer.
Circle your answer.
The statements below are using the sentence,
"If it is raining, the field is wet."
As the sentence changes, choose the type of statement it would be in a geometry proof.
4) When the two parts of an IF-THEN statement are switched it is a/an ___________ statement.
"If the field is wet then it is raining."
a) converse
b) inverse
c) negation
—
221 —
5) The ____________ of a IF-THEN statement is the statement that results when the IF part and
the THEN part are both negated. If it is not raining, then the field is not wet.
a) converse
b) inverse
c) negation
6) "It is not raining" is an example of a _________________.
a) converse
b) inverse
c) negation
Short Answer: For each item, fill in the blank with the word that fits best. Choose your words
from the Word Bank.
Word Bank
conjecture
contrapositive
corollary
counterexample
hypothesis
indirect
summary
theorem
verify
7) A
is a statement or opinion that is not based on evidence. It is an educated guess.
"Halibut taste better than salmon to most people."
8) In a statement when two parts of the "If then" part of the sentence are switched and are BOTH
negative, the statement is
. 201CIf the field is not wet, then it is not raining.201D
9) An
proof is proof by contradiction. This kind of proof is a statement that is proved by
assuming that the conjecture, or guess is false.
10) When someone gives a
abridged explanation.
of something it is a concise, comprehensive statement or an
11) An easily drawn conclusion or natural consequence is a
, and requires little or no proof
from one already proved. For example, if person east a lot of fatty food, then a natural
consequence would be that they gain weight.
12) To
something means to test and confirm its truth.
—
222 —
13) When a mathematical statement can be proved using the rules of logic, and has already been
shown to be true, it is a
.
is one that proves a statement to be false. For instance, the statement about a yard
14) A
in SE Alaska, 201CThere is a cedar tree in my yard201D proves that the following statement
cannot be true---201CAll trees in Southeast Alaska are hemlocks.201D
True or False: Read each statement below and decide if it is a true or a false statement. Circle
the answer you think is the correct one.
15) The statement, All bears are mammals. All mammals have lungs. So bears must have lungs is
an example of deductive reasoning.
a) True
b) False
16) A form of reasoning that moves from general to the particular is deductive reasoning.
a) True
b) False
17) Another example of deductive reasoning would be, Every bear we have seen is black, so the
next bear we see will be black.
a) True
b) False
18) Inductive reasoning moves from the specific to the general.
a) True
b) False
19) An example of inductive reasoning is the following statement. My mom is a resident of the
United States and so am I, so all Alaskan residents are residents of the United States.
a) True
b) False
20) With inductive reasoning, statements are made that support a conclusion but that does not
automatically mean that the statements will be true.
a) True
b) False
—
223 —
—
224 —
Geometry: Unit 3 Proofs
Name: ___________________
Date: ___________________
1) "If it is raining, then the field is wet" is a/an _______________.
a) hypothesis
b) conditional statement
c) conclusion
2) The first part statement, "If it is raining..." is the ________________ .
a) hypothesis
b) conditional statement
c) conclusion
3) In the same statement, the part of the sentence that states "...the field is wet" is the
_____________.
a) hypothesis
b) conditional statement
c) conclusion
—
225 —
Multiple Choice: Read the statement carefully and select the best choice for your answer.
Circle your answer.
The statements below are using the sentence,
"If it is raining, the field is wet."
As the sentence changes, choose the type of statement it would be in a geometry proof.
4) When the two parts of an IF-THEN statement are switched it is a/an ___________ statement.
"If the field is wet then it is raining."
a) converse
b) inverse
c) negation
5) The ____________ of a IF-THEN statement is the statement that results when the IF part and
the THEN part are both negated. If it is not raining, then the field is not wet.
a) converse
b) inverse
c) negation
6) "It is not raining" is an example of a _________________.
a) converse
b) inverse
c) negation
—
226 —
Short Answer: For each item, fill in the blank with the word that fits best. Choose your words
from the Word Bank.
Word Bank
conjecture
contrapositive
corollary
counterexample
hypothesis
indirect
summary
theorem
verify
7) A conjecture is a statement or opinion that is not based on evidence. It is an educated guess.
"Halibut taste better than salmon to most people."
8) In a statement when two parts of the "If then" part of the sentence are switched and are BOTH
negative, the statement is contrapositive . 201CIf the field is not wet, then it is not
raining.201D
9) An indirect proof is proof by contradiction. This kind of proof is a statement that is proved by
assuming that the conjecture, or guess is false.
10) When someone gives a summary of something it is a concise, comprehensive statement or
an abridged explanation.
11) An easily drawn conclusion or natural consequence is a corollary , and requires little or no
proof from one already proved. For example, if person east a lot of fatty food, then a natural
consequence would be that they gain weight.
12) To verify something means to test and confirm its truth.
13) When a mathematical statement can be proved using the rules of logic, and has already been
shown to be true, it is a theorem .
—
227 —
14) A counterexample is one that proves a statement to be false. For instance, the statement
about a yard in SE Alaska, 201CThere is a cedar tree in my yard201D proves that the following
statement cannot be true---201CAll trees in Southeast Alaska are hemlocks.201D
True or False: Read each statement below and decide if it is a true or a false statement. Circle
the answer you think is the correct one.
15) The statement, All bears are mammals. All mammals have lungs. So bears must have lungs is
an example of deductive reasoning.
a) True
b) False
16) A form of reasoning that moves from general to the particular is deductive reasoning.
a) True
b) False
17) Another example of deductive reasoning would be, Every bear we have seen is black, so the
next bear we see will be black.
a) True
b) False
18) Inductive reasoning moves from the specific to the general.
a) True
b) False
—
228 —
19) An example of inductive reasoning is the following statement. My mom is a resident of the
United States and so am I, so all Alaskan residents are residents of the United States.
a) True
b) False
20) With inductive reasoning, statements are made that support a conclusion but that does not
automatically mean that the statements will be true.
a) True
b) False
—
229 —
—
230 —
UNIT 4
Lines & Transversals
Sealaska Heritage Institute
Grade Level Expectations for Unit 4
Unit 4—Lines and Transversals
Alaska State Mathematics Standard A
$VWXGHQWVKRXOGXQGHUVWDQGPDWKHPDWLFDOIDFWVFRQFHSWVSULQFLSOHVDQGWKHRULHV
$VWXGHQWZKRPHHWVWKHFRQWHQWVWDQGDUGVKRXOG
$FRQVWUXFWGUDZPHDVXUHWUDQVIRUPFRPSDUHYLVXDOL]HFODVVLI\DQGDQDO\]HWKH
UHODWLRQVKLSVDPRQJJHRPHWULF¿JXUHVDQG
Alaska State Mathematics Standard C
$VWXGHQWVKRXOGXQGHUVWDQGDQGEHDEOHWRIRUPDQGXVHDSSURSULDWHPHWKRGVWRGH¿QH
DQGH[SODLQPDWKHPDWLFDOUHODWLRQVKLSV
$VWXGHQWZKRPHHWVWKHFRQWHQWVWDQGDUGVKRXOG
&H[SUHVVDQGUHSUHVHQWPDWKHPDWLFDOLGHDVXVLQJRUDODQGZULWWHQSUHVHQWDWLRQV
SK\VLFDOPDWHULDOVSLFWXUHVJUDSKVFKDUWVDQGDOJHEUDLFH[SUHVVLRQV
&UHODWHPDWKHPDWLFDOWHUPVWRHYHU\GD\ODQJXDJH
GLEs
The student demonstrates an understanding of geometric relationships by
>@*LGHQWLI\LQJDQDO\]LQJFRPSDULQJRUXVLQJSURSHUWLHVRIDQJOHVLQFOXGLQJVXSSOHPHQWDU\RUFRPSOHPHQWDU\
The student demonstrates an understanding of geometric relationships by
>@*LGHQWLI\LQJDQDO\]LQJFRPSDULQJRUXVLQJSURSHUWLHVRISODQH¿JXUHV
‡VXSSOHPHQWDU\FRPSOHPHQWDU\RUYHUWLFDODQJOHV
‡DQJOHVFUHDWHGE\SDUDOOHOOLQHVZLWKDWUDQVYHUVDO
The student communicates his or her mathematical thinking by
>@36UHSUHVHQWLQJPDWKHPDWLFDOSUREOHPVQXPHULFDOO\JUDSKLFDOO\DQGRUV\PEROLFDOO\WUDQVODWLQJDPRQJWKHVHDOWHUQDWLYHUHSUHVHQWDWLRQVRUXVLQJDSSURSULDWHYRFDEXODU\
V\PEROVRUWHFKQRORJ\WRH[SODLQMXVWLI\DQGGHIHQGVWUDWHJLHVDQGVROXWLRQV
>@36UHSUHVHQWLQJPDWKHPDWLFDOSUREOHPVQXPHULFDOO\JUDSKLFDOO\DQGRUV\PEROLFDOO\FRPPXQLFDWLQJPDWKLGHDVLQZULWLQJRUXVLQJDSSURSULDWHYRFDEXODU\V\PEROVRU
WHFKQRORJ\WRH[SODLQMXVWLI\DQGGHIHQGVWUDWHJLHVDQGVROXWLRQV
Vocabulary
& Definitions
Introduction of Math Vocabulary
Equidistant
(TXLGLVWDQWPHDQVHTXDOO\GLVWDQWRUDWWKHVDPHGLVWDQFH)RUH[DPSOHWKH
two endpoints of a segment are equidistant from its midpoint.
2QDVQRZÀDNHHDFKRIWKHWLSVLVHTXLGLVWDQWIURPWKH
center.
Parallel lines
3DUDOOHOOLQHVDUHOLQHVWKDWDUHRQWKHVDPHSODQHFRSODQDUEXWWKDWGRQRW
intersect. You can think of them as going in the same direction and staying the same distance apart.
%RDUGVRQDGRFNUHSUHVHQWH[DPSOHVRISDUDOOHOOLQHV:KHQ
\RXDUHOHDUQLQJWRVNL\RXPLJKWWU\WRNHHS\RXUVNLVSDUDOOHODVZHOO
—
237 —
Introduction of Math Vocabulary
Skew Lines
Skew lines are lines that do not intersect and that are not parallel. They cannot be coplanar.
You can see skew lines represented in this picture that was
WDNHQLQ$QFKRUDJHDIWHUWKHELJHDUWKTXDNHLQ
3LFWXUHLVIURP9,/'$8$)
Transversals
$WUDQVYHUVDOLVDOLQHWKDWFXWVDFURVVDQRWKHUVHWRI
lines.
,QWKHSLFWXUHLIWKHWUHHVUHSUHVHQWOLQHVWKHIDOOHQWUHHWUXQN
is the transversal of the two standing trees.
—
238 —
Introduction of Math Vocabulary
Perpendicular lines
Perpendicular lines are lines that intersect at a right
oDQJOH
,QWKLVSLFWXUHWKHEDUVRQ
the window are perpenGLFXODU2WKHUH[DPSOHV
of perpendicular lines can
EHIRXQGRQVLGHZDONV
VWUHHWVODPSSRVWVIHQFHVDQGEXLOGLQJV
Perpendicular bisector
$SHUSHQGLFXODUELVHFWRULVDOLQHWKDWLVSHUSHQGLFXODUWR
DVHJPHQWDQGWKDWSDVVHVWKURXJKLWVPLGSRLQW
$VNVWXGHQWVLIWKH\FDQ¿QGSHUSHQdicular bisectors on this brick wall.
Geometric figure
$JHRPHWULF¿JXUHLVDQ\VHWRISRLQWVRQDSODQHRULQVSDFH
([DPSOHVRIJHRPHWULF¿JXUHVDUHSRLQWVVHJPHQWVUD\V
FXUYHVSHQWDJRQVDQGFXEHV
3RLQWRXWH[DPSOHVRIJHRPHWULF¿Jures on this basket from Hoonah.
—
239 —
Introduction of Math Vocabulary
Interior Angles
$QLQWHULRUDQJOHLVDQDQJOHLQWKHLQWHULRU
LQVLGHRIDJHRPHWULF¿JXUH
$¿JXUHWKDWVKRZVWZROLQHVFXWE\DWUDQVYHUVDOLVDW\SHRIJHRPHWULF¿JXUHDQGWKHLQWHULRU
angles are those that are between the two lines
that are being cut.
,QWKLVGUDZLQJDQJOHV$%&DQG'DUHLQWHULRU
angles.
Use this picture of electrical wires to identify interior
angles.
Exterior Angles
([WHULRUDQJOHVDUHDQ\RIWKHIRXUDQJOHVWKDWGRQRW
include a region of the space between two lines intersectHGE\DWUDQVYHUVDO,QWKLVGLDJUDPDQJOHVDQG
DUHH[WHULRUDQJOHV
)LQGSDUDOOHOOLQHVFXWE\DWUDQVYHUVDORQWKLVFURVVZRUGSX]]OHDQGLGHQWLI\WKHH[WHULRU
angles.
—
240 —
Introduction of Math Vocabulary
Alternate Exterior Angles
$OWHUQDWHH[WHULRUDQJOHVDUHWZRH[WHULRUDQJOHV
on opposite sides of a transversal that lie on differHQWSDUDOOHOOLQHV,QWKHGLDJUDPDOWHUQDWHH[WHULRU
DQJOHVZRXOGEHµD¶DQGµK¶RUµE¶DQGµJ¶
This picture of a guitar shows
VHYHUDOVHWVRIDOWHUQDWHH[WHULRUDQJOHV
Alternate Interior Angles
$OWHUQDWHLQWHULRUDQJOHVDUHWZRLQWHULRUDQJOHVZKLFKOLHRQ
different parallel lines and on opposite sides of a transversal.
2QWKHGLDJUDPDQJOHVDQGDUHDOWHUQDWHLQWHULRUDQJOHV
6RDUHDQJOHVDQG
Pick out alternate interior angles on
WKLVSLFWXUHRI¿UHHVFDSHV
—
241 —
Introduction of Math Vocabulary
Consecutive Interior Angles
&RQVHFXWLYHPHDQV³IROORZLQJRQHDIWHUWKHRWKHULQRUGHU´
&RQVHFXWLYHLQWHULRUDQJOHVDUHWZRLQWHULRUDQJOHVO\LQJRQWKH
same side of the transversal cutting across two lines. In the
GLDJUDPDQJOHVGDQGIDUHFRQVHFXWLYHLQWHULRUDQJOHVDQG
angles c and e are consecutive interior angles.
)LQGFRQVHFXWLYHLQWHULRUDQJOHVRQWKLVIHQFH
Corresponding Angles
:KHQWZROLQHVDUHFURVVHGE\DQRWKHUOLQHZKLFKLVFDOOHG
WKH7UDQVYHUVDOWKHDQJOHVLQPDWFKLQJFRUQHUVRUSRVLWLRQV
DUHFDOOHGFRUUHVSRQGLQJDQJOHV,QWKLV¿JXUHWKHSDLUVRI
FRUUHVSRQGLQJDQJOHVDUHDQGDQGDQGDQG
DQG
Many pairs of corresponding angles can be demonstrated on this picture of a bridge railing.
—
242 —
Introduction of Math Vocabulary
Congruent angles
&RQJUXHQWDQJOHVDUHDQJOHVWKDWKDYHWKHVDPHDQJOH
measure. They are equal in size.
+HUHLVDSLFWXUHRIDQROGFKDSHOEXLOGLQJLQ<DNXWDW0DQ\H[DPSOHVRIFRQgruent angles can be found on this building.
—
243 —
—
244 —
Language and Skills
Development
Using the Math Vocabulary Terms
Language & Skills Development
LISTENING
Use the activity pages
from the Student
Support Materials.
SPEAKING
READING
Use the activity pages
from the Student
Support Materials.
WRITING
Use the activity pages
from the Student
Support Materials.
Let’s Move
Identify an appropriate body movement for each vocabulary word. This may
LQYROYHPRYHPHQWVRIKDQGVDUPVOHJVHWF3UDFWLFHWKHERG\PRYHPHQWVZLWK
WKHVWXGHQWV:KHQWKHVWXGHQWVDUHDEOHWRSHUIRUPWKHERG\PRYHPHQWVZHOO
say a vocabulary word. The students should respond with the appropriate body
movement. You may wish to say the vocabulary words in a running story. When
DYRFDEXODU\ZRUGLVKHDUGWKHVWXGHQWVVKRXOGSHUIRUPWKHDSSURSULDWHERG\
PRYHPHQW5DWKHUWKDQXVLQJERG\PRYHPHQWVRULQDGGLWLRQWRWKHERG\PRYHPHQWV \RX PD\ ZLVK WR XVH ³VRXQG HIIHFWV´ IRU LGHQWLI\LQJ YRFDEXODU\ ZRUGV
The students should perform the appropriate body movements/sound effects for
the words you say.
Right or Wrong?
Mount the vocabulary illustrations on the chalkboard. Point to one of the illustrations and say its vocabulary word. The students should repeat the vocabulary
ZRUGIRUWKDWLOOXVWUDWLRQ+RZHYHUZKHQ\RXSRLQWWRDQLOOXVWUDWLRQDQGVD\DQ
LQFRUUHFWYRFDEXODU\ZRUGIRULWWKHVWXGHQWVVKRXOGUHPDLQVLOHQW5HSHDWWKLV
process until the students have responded a number of times to the different
vocabulary illustrations.
Half Time
%HIRUHWKHDFWLYLW\EHJLQVFXWHDFKRIWKHVLJKWZRUGVLQKDOI.HHSRQHKDOIRI
each sight word and give the remaining halves to the students. Hold up one of
your halves and the student who has the other half of that word must show his half
DQVD\WKHVLJKWZRUG5HSHDWLQWKLVZD\XQWLODOOVWXGHQWVKDYHUHVSRQGHG$Q
alternative to this approach is to give all of the word halves to the students. Say
one of the sight words and the two students who have the halves that make up
the sight word must show their halves. Depending upon the number of students in
\RXUFODVV\RXPD\ZLVKWRSUHSDUHH[WUDVLJKWZRUGFDUGVIRUWKLVDFWLYLW\
Watch Your Half
3UHSDUHDSKRWRFRS\RIHDFKRIWKHYRFDEXODU\LOOXVWUDWLRQV&XWWKHSKRWRFRSLHG
illustrations in half. Keep the illustration halves in separate piles. Group the
students into two teams. Give all of the illustration halves from one pile to the
players in Team One. Give the illustration halves from the other pile to the playHUVLQ7HDP7ZR6D\DYRFDEXODU\ZRUG:KHQ\RXVD\³*R´WKHVWXGHQWIURP
HDFKWHDPZKRKDVWKHLOOXVWUDWLRQKDOIIRUWKHYRFDEXODU\ZRUG\RXVDLGVKRXOG
UXVKWRWKHFKDONERDUGDQGZULWHWKHZRUGRQWKHERDUG7KH¿UVWSOD\HUWRGR
WKLV FRUUHFWO\ ZLQV WKH URXQG 5HSHDW XQWLO DOO SOD\HUV KDYH SDUWLFLSDWHG 7KLV
DFWLYLW\PD\EHSOD\HGPRUHWKDQRQFHE\FROOHFWLQJPL[LQJDQGUHGLVWULEXWLQJ
the illustration halves to the two teams.
—
247 —
Student Support
Materials
—
251 —
—
253 —
—
255 —
—
257 —
—
259 —
—
261 —
—
263 —
—
265 —
—
267 —
—
269 —
—
271 —
—
273 —
—
275 —
—
277 —
True-False Sentences
(Listening and/or Reading Comprehension)
1. 2QDUXOHUWKH´PDUNDQGWKH´PDUNDUHequidistantIURPWKH´PDUN
2. Parallel lines will always eventually intersect.
3. Skew lines are not necessarily straight lines.
When a transversalFXWVDFURVVWZROLQHVWKHUHDUHWZRSRLQWVRILQWHUVHFWLRQ
5. Perpendicular lines make up two sides of every triangle.
6. Perpendicular bisectors divide line segments in half.
7. $OOJHRPHWULF¿JXUHVKDYHDQLQWHULRUDQGDQH[WHULRU
$QREWXVHDQJOHFDQQRWEHDQinterior angle.
9. ,IDQJOHVDUHDGMDFHQWWRHDFKRWKHUWKH\FDQQRWEHexterior angles.
10. Vertical angles are a type of alternate exterior angles.
11. Alternate interior angles can form a linear pair.
12. Consecutive interior angles would never be adjacent to each other.
:KHQWZROLQHVDUHFXWE\DWUDQVYHUVDOWKHUHDUHDOZD\VIRXUSDLUVRIcorresponding
angles.
If two angles each measure 90oWKH\DUHcongruent angles.
$QVZHUV7))7)7)))))777
1. Sitka and Ketchikan are equidistant from Juneau.
2. If lines are parallelWKH\DUHDOVRFRSODQDU
,IOLQHVDUHLQWKHVDPHSODQHWKH\FDQQRWEHskew lines.
The lines cut by a transversal have to be parallel lines.
It is important for a house builder to use perpendicular lines.
Lines and curves can both have perpendicular bisectors.
7. *HRPHWULF¿JXUHVFDQEHRQHWZRRUWKUHHGLPHQVLRQDO
8. Interior angles are in between two lines.
9. Exterior angles might be right angles.
10. Alternate exterior angles are always on opposite sides of a transversal.
11. Each angle in a pair of alternate interior angles has the transversal as one of its sides.
12. ,QDSDLURIFRQVHFXWLYHLQWHULRUDQJOHVWKHDQJOHPHDVXUHVDUHDOZD\VWKHVDPH
13. Corresponding anglesVKDUHWKHVDPHYHUWH[
$WULDQJOHDOZD\VKDVDWOHDVWWZRcongruent angles.
$QVZHUV)77)7)77777)))
—
279 —
Match the Halves
1. The endpoints of a segment
$DOOWKUHHOLQHVDUHLQWKHVDPHSODQH
2. The sides of a straight road
B. are interior angles.
/LQHVWKDWQHYHULQWHUVHFWDUHVNHZOLQHVLI
they
&GLYLGHVDVHJPHQWLQWRWZRHTXDO
sections.
,IDWUDQVYHUVDOLQWHUVHFWVWZRSDUDOOHOOLQHV
D. on opposite sides of a transversal.
7ZRDGMRLQLQJVLGHVRIDVTXDUH
E. are alternate interior angles.
$SHUSHQGLFXODUELVHFWRU
)DUHHTXLGLVWDQWIURPWKHPLGSRLQW
6TXDUHVFLUFOHVDQGS\UDPLGV
G. are consecutive interior angles.
$Q\DQJOHVWKDWDUHLQVLGHJHRPHWULF¿JXUHV
H. are on the same side of a
transversal.
([WHULRUDQJOHVDUHQRWEHWZHHQ
I. are not parallel lines.
$OWHUQDWHH[WHULRUDQJOHVDUHH[WHULRUDQJOHV
-DUHH[DPSOHVRIJHRPHWULF¿JXUHV
11. Interior angles that are not consecutive or
adjacent
K. the lines cut by a transversal.
12. Interior angles on the same side of a
transversal
L. are perpendicular lines.
&RUUHVSRQGLQJDQJOHV
M. are congruent angles.
,IDQJOHVKDYHWKHVDPHPHDVXUHWKH\
N. might represent parallel lines.
$QVZHUV)1,$/&-%.'(*+0
—
280 —
'H¿QLWLRQV
Equidistant: HTXDOO\GLVWDQWRUDWWKHVDPHGLVWDQFH
Parallel linesOLQHVWKDWDUHRQWKHVDPHSODQHFRSODQDUEXWWKDWGRQRWLQWHUVHFW
Skew Lines: lines that do not intersect and that are not parallel.
Transversal: a line that cuts across another set of lines.
Perpendicular lines: OLQHVWKDWLQWHUVHFWDWDULJKWoDQJOH
Perpendicular bisector: a line that is perpendicular to a segment and that passes
through its midpoint.
*HRPHWULF¿JXUHany set of points on a plane or in space.
Interior Angle: DQDQJOHLQWKHLQWHULRULQVLGHRIDJHRPHWULF¿JXUH
Exterior Angles: any of the four angles that do not include a region of the space
between two lines intersected by a transversal.
Alternate Exterior Angles: WZRH[WHULRUDQJOHVRQRSSRVLWHVLGHVRIDWUDQVYHUVDOWKDW
lie on different parallel lines.
Alternate Interior Angles: two interior angles which lie on different parallel lines and
on opposite sides of a transversal.
Consecutive Interior Angles: two interior angles lying on the same side of the transversal cutting across two lines.
Corresponding Angles: the angles in matching corners or positions, when two lines
are crossed by a transversal.
Congruent angles: angles that have the same angle measure.
—
281 —
Which Belongs
1. 6NHZSHUSHQGLFXODUSDUDOOHOOLQHVDUHQRWFRSODQDU
2. ,IDQJOHVDUHDGMDFHQWWKH\PLJKWEHLQWHULRUDQJOHVFRUUHVSRQGLQJDQJOHVFRQVHFXWLYHDQJOHV
3HUSHQGLFXODUVNHZSDUDOOHOOLQHVDOZD\VLQWHUVHFWHDFKRWKHU
,IDQJOHVDUHWKHVDPHVL]HWKH\PXVWEHFRUUHVSRQGLQJFRQJUXHQWYHUWLFDODQJOHV
([WHULRUFRQJUXHQWFRUUHVSRQGLQJDQJOHVDUHRQWKHRXWVLGHRIOLQHVFXWE\DWUDQVversal.
/LQHDUSDLUVDUHH[DPSOHVRIFRUUHVSRQGLQJDQJOHVJHRPHWULF¿JXUHVDOWHUQDWHH[WHULRUDQJOHV
7. $OLQHDORQJDZDOOLQWHUVHFWVDOLQHDORQJDURRIVRWKHOLQHVFDQQRWEHSHUSHQGLFXODU
SDUDOOHOLQWHULRU
Two angles that are between lines cut by a transversal and on the same side of the
WUDQVYHUVDODUHFRQVHFXWLYHLQWHULRUFRQJUXHQWFRUUHVSRQGLQJDQJOHV
9. 7KHPLGSRLQWRIRQHVLGHRIDUHFWDQJOHLVSDUDOOHOWRHTXLGLVWDQWIURPSHUSHQGLFXODU
WRWKHFRUQHUVRQWKDWVLGH
10. /LQHDUSDLUVVXSSOHPHQWDU\DQJOHVDOWHUQDWHH[WHULRUDQJOHVPLJKWKDYHPHDVXUHV
that add up to 90o.
11. &RUUHVSRQGLQJLQWHULRUH[WHULRUDQJOHVKDYHPDWFKLQJSRVLWLRQVLQDV\VWHPRI
lines cut by a transversal
12. 7ZROLQHVFXWE\DWUDQVYHUVDOFDQQRWKDYHDQSHUSHQGLFXODUELVHFWRULQWHULRUDQJOHV
H[WHULRUDQJOH
,IDQJOHVDUHRQRSSRVLWHVLGHVRIDWUDQVYHUVDOWKH\PLJKWEHDOWHUQDWHLQWHULRUFRQVHFXWLYHLQWHULRUFRUUHVSRQGLQJDQJOHV
/LQHVFURVVHGE\DELVHFWRUSHUSHQGLFXODUWUDQVYHUVDOGRQRWKDYHWREHSDUDOOHO
1. Skew
2. Interior angles
Perpendicular
&RQJUXHQW
([WHULRU
*HRPHWULF¿JXUHV
7. Parallel
&RQVHFXWLYHLQWHULRU
9. Equidistant from
10. $OWHUQDWHH[WHULRU
11. &RUUHVSRQGLQJ
12. Perpendicular bisector
$OWHUQDWHLQWHULRU
Transversal
—
282 —
Multiple Choice
:KLFKLV127DQH[DPSOHRIDSRLQWWKDWPXVWEHequidistant from the
endpoints of a segment:
DWKHPLGSRLQWRIWKHVHJPHQW
EWKHLQWHUVHFWLRQRIWKHVHJPHQWZLWKDOLQHWKDWFURVVHVLW
FWKHLQWHUVHFWLRQRIWKHVHJPHQWDQGLWVSHUSHQGLFXODUELVHFWRU
2.
When two lines are parallelWKH\DUHDOVR
DLQWKHVDPHSODQH
ELQWHUVHFWLQJDWRQO\RQHSRLQW
FH[WHQGLQJLQRQHGLUHFWLRQ
Skew lines might be represented by
DWKHVLGHVRIDSLFWXUHIUDPH
EWZRWUHHVWKDWDUHWLOWHGDWGLIIHUHQWDQJOHV
FWKHWZRUDLOVRIDVWUDLJKWÀDWUDLOURDGWUDFN
Transversals are lines that always
DFXWDFURVVDWOHDVWWZRRWKHUOLQHV
EFXWDFURVVSDUDOOHOOLQHV
FDUHSHUSHQGLFXODUWRWKHOLQHVWKH\FURVV
:KHUHZRXOG\RXEHOLNHO\WR¿QGperpendicular lines represented;
DWZRHGJHVRIDSLHFHRISDSHU
EDUDLOLQJRQDGHFN
FERWKRIWKHDERYH
$perpendicular bisector might be described as follows:
DDOLQHWKDWLVSHUSHQGLFXODUWRDVHJPHQWDQGLQWHUVHFWVLWVPLGSRLQW
EDOLQHWKDWLVDWo to a segment and cuts it in half
FDQ\VHJPHQWWKDWLVDWDULJKWDQJOHWRDQRWKHUVHJPHQW
$Q\VHWRISRLQWVLQVSDFHLVDJHRPHWULF¿JXUHif
DWKHSRLQWVDUHRQWKHVDPHSODQH
EWKHSRLQWVGRQRWIRUPFXUYHV
FWKHUHLVDWOHDVWRQHSRLQWLQWKHVHW
$SDLURIinterior angles can never also be
DFRUUHVSRQGLQJDQJOHV
EDGMDFHQWDQJOHV
FRQRSSRVLWHVLGHVRIDWUDQVYHUVDO
—
283 —
9.
If two angles are both exteriorDQJOHVWKH\PLJKWEH
DVXSSOHPHQWDU\DQJOHV
EREWXVHDQJOHV
FHLWKHURIWKHDERYH
10. Which two things are true about alternate exterior angles"
DWKH\DUHRQRSSRVLWHVLGHVRIDWUDQVYHUVDODQGRQWKHRXWVLGHRIWKHOLQHV
that are being crossed
EWKH\DUHRQWKHVDPHVLGHRIDWUDQVYHUVDODQGRQWKHRXWVLGHRIWKHOLQHV
that are being crossed
FWKH\DUHDGMDFHQWDQGRQWKHRXWVLGHRIWKHOLQHVWKDWDUHEHLQJFURVVHG
11.
Alternate interior angles cannot also be
DULJKWDQJOHV
EFRQJUXHQWDQJOHV
FDGMDFHQWDQJOHV
12.
Which must be true about consecutive interior angles"
DWKH\DUHDOZD\VDGMDFHQWWRHDFKRWKHU
EWKH\DUHDOZD\VFRPSOHPHQWDU\
FWKH\DUHDOZD\VRQWKHVDPHVLGHRIDWUDQVYHUVDO
Corresponding angles might be found on
DDGHVLJQRQDTXLOW
EDGRRUIUDPH
FDVWRSVLJQ
:KLFKRIWKHIROORZLQJZRXOGDOZD\VEHcongruent angles"
DWZRFRUQHUVRIDURRP
EWZRULJKWDQJOHV
FWZRFRUUHVSRQGLQJDQJOHV
$QVZHUV
1. B
2. $
B
$
&
$
7. &
$
9. &
10. $
11. &
12. &
—
$
B
284 —
Complete the Sentence
1. $SRLQWDSHQWDJRQDVSKHUHDQGDSDLURIDOWHUQDWHLQWHULRUDQJOHVDUHDOOH[DPSOHVRI
__________________________________.
2. The door of Debbie’s classroom was ______________ from the two ends of the hallway.
:KHQDWUDQVYHUVDOLQWHUVHFWVWZROLQHVWKHDQJOHVLQWKHXSSHUULJKWFRUQHURIHDFKLQWHUsection would be ______________________________.
_________________________were represented when two bars on a window intersected
at a right angle.
7KHZKLWHOLQHVRQWKHURDGLQWHUVHFWHGERWKVLGHVRIDFURVVZDONDWDQDQJOHDQGIRUPHGD
________________________________.
__________________________ are in between two lines.
7. $QJOHVWKDWDUHRQRSSRVLWHVLGHVRIDWUDQVYHUVDODUHBBBBBBBBBBBBBBBBBBBBXQOHVVWKH\
DUHH[WHULRUDQJOHV
,IDQJOHVGRQRWLQFOXGHDQ\UHJLRQRIVSDFHEHWZHHQWZROLQHVWKH\DUHBBBBBBBBBBBBB
9. ³2XWVLGH´DQJOHVWKDWDUHRQRSSRVLWHVLGHVRIDWUDQVYHUVDODUHBBBBBBBBBBBBBBBBBBB
10. 3DLUVRIDFXWHDQJOHVFRPSOHPHQWDU\DQJOHVLQWHULRUDQJOHVH[WHULRUDQJOHVRUYHUWLFDO
angles all might be ________________________________.
11. $VWKHERDWWRVVHGDURXQGRQWKHZDYHVDSDLURIBBBBBBBBBBBBBBBBBBBBBZHUHUHSUHVHQWHGE\LWVPDVWDQGWKHÀDJSROHRQVKRUH
12. ,IDSDLURIDQJOHVLVEHWZHHQWZROLQHVDQGRQWKHVDPHVLGHRIDWUDQVYHUVDOWKH\DUH
___________________ angles.
7KHFURVVRQ0W5REHUWVKDVWZRSLHFHVDQGRQHSLHFHLVWKHBBBBBBBBBBBBBBBBBBBRI
the other.
7KHWHOHSKRQHZLUHUDQDORQJVLGHE\VLGHDOZD\VWKHVDPHGLVWDQFHDSDUWMXVWOLNHDSDLU
of ____________________________.
$QVZHUV
1. *HRPHWULF¿JXUHV
2. Equidistant
&RUUHVSRQGLQJDQJOHV
Perpendicular lines
Transversal
Interior angles
7. $OWHUQDWHLQWHULRUDQJOHV
([WHULRUDQJOHV
9. $OWHUQDWHH[WHULRUDQJOHV
10. &RQJUXHQWDQJOHV
11. Skew lines
12. &RQVHFXWLYHLQWHULRUDQJOHV
Perpendicular bisector
Parallel lines
—
285 —
Creative Writing
Write about the picture using words from this unit. Label or number things on the picture or
XVHGLDJUDPVWRKHOSH[SODLQWKHZRUGVLIQHHGHG
—
286 —
Place-Based Practice Activity
)LQGPDSVRUDHULDOSKRWRVRI\RXUWRZQRU¿QGDQGSULQWSDJHVIURP*RRJOH
0DSV&KRRVHDUHDVZLWKORWVRIURDGLQWHUVHFWLRQVRURWKHULQWHUVHFWLQJOLQHV
Other options might be to obtain highway blueprints from the local road departPHQWRUWR¿QGPDSVRIDQDUHDWKDW\RXDUHSODQQLQJWRYLVLWRQDFODVVWULS
6WXG\WKHPDSVDQGRUSKRWRVWR¿QGH[DPSOHVRIHTXLGLVWDQWSRLQWVSDUDOOHO
OLQHVSHUSHQGLFXODUOLQHVDQGELVHFWRUVDQGWUDQVYHUVDOVDQGDOORIWKHLUDVVRFLated angles.
6WXGHQWVFDQGRWKLVDFWLYLW\LQVPDOOJURXSV7KHQWKH\FDQVKDUHWKHLU¿QGLQJV
ZLWKDQRWKHUJURXS7KHRWKHUJURXSRIVWXGHQWVFDQGHFLGHLIWKHH[DPSOHVDUH
FRUUHFWDQGFDQWU\WRLGHQWLI\PRUHH[DPSOHV
—
287 —
—
288 —
Unit Assessment
—
289
9 —
—
290 —
Geometry: Unit 4
Name: ___________________
Date: ___________________
Match the key vocabulary words on the left with their definition on the right. Place the letter of
the definition in front of the word that it matches.
a. lines that are on the same plane
(coplanar) but that do not intersect
1) _____ skew lines
2) _____ transversals
b. lines that do not intersect and that
are not parallel and cannot be
coplanar.
3) _____ perpendicular lines
4) _____ perpendicular bisector
c. lines that intersect at a right (90o)
angle
5) _____ parallel lines
d. is a line that is perpendicular to a
segment, and that passes through
its midpoint
e. lines that cuts across another set
of lines
Fill in the Blank: Fill in the blank for each statement with the word that best fits. Choose the
words from the Word Bank. Some words will not be used.
Word Bank
equidistant
geometric figure
parallel
perpendicular
skew line
transversal
6) A line is
7)
8) A
to another lines if the lines meet at 90 degrees.
means equally distant, or at the same distance.
is a line that cuts across another set of lines.
9) Boards on a dock would be an example of
10) A
lines.
is any set of points on a plane or in space
—
291 —
Multiple Choice: Read each statement carefully and circle the best answer.
11) An angle in the interior inside of a geometric figure is a/an _______________ angle.
a) exterior
b) interior
c) alternate interior
d) alternate exterior
12) Two exterior angles on opposite sides of a transversal that lie on different parallel lines are
__________________ angles.
a) exterior
b) interior
c) alternate interior
d) alternate exterior
13) The four angles that do not include a region of the space between two lines intersected by a
transversal are the ______________ angles.
a) exterior
b) interior
c) alternate interior
d) alternate exterior
14) Two interior angles which lie on different parallel lines and on opposite sides of a transversal
are _____________________ angles.
a) exterior
b) interior
c) alternate interior
d) alternate exterior
—
292 —
15) In the illustration below of the old chapel building in Yakutat, put an X on the congruent angles
that are found on this building.
16) In the space below, illustrate or define consecutive interior angles.
17) In the space below, Illustrate OR write a definition for corresponding angles.
—
293 —
—
294 —
Geometry: Unit 4
Name: ___________________
Date: ___________________
Match the key vocabulary words on the left with their definition on the right. Place the letter of
the definition in front of the word that it matches.
a. lines that are on the same plane
(coplanar) but that do not intersect
1)
b
skew lines
2)
e
transversals
3)
c
perpendicular lines
4)
d
perpendicular bisector
5)
a
parallel lines
b. lines that do not intersect and that
are not parallel and cannot be
coplanar.
c. lines that intersect at a right (90o)
angle
d. is a line that is perpendicular to a
segment, and that passes through
its midpoint
e. lines that cuts across another set
of lines
Fill in the Blank: Fill in the blank for each statement with the word that best fits. Choose the
words from the Word Bank. Some words will not be used.
Word Bank
equidistant
geometric figure
parallel
perpendicular
skew line
transversal
6) A line is perpendicular to another lines if the lines meet at 90 degrees.
7)
equidistant means equally distant, or at the same distance.
8) A transversal is a line that cuts across another set of lines.
9) Boards on a dock would be an example of parallel lines.
10) A geometric figure is any set of points on a plane or in space
—
295 —
Multiple Choice: Read each statement carefully and circle the best answer.
11) An angle in the interior inside of a geometric figure is a/an _______________ angle.
a) exterior
b) interior
c) alternate interior
d) alternate exterior
12) Two exterior angles on opposite sides of a transversal that lie on different parallel lines are
__________________ angles.
a) exterior
b) interior
c) alternate interior
d) alternate exterior
13) The four angles that do not include a region of the space between two lines intersected by a
transversal are the ______________ angles.
a) exterior
b) interior
c) alternate interior
d) alternate exterior
14) Two interior angles which lie on different parallel lines and on opposite sides of a transversal
are _____________________ angles.
a) exterior
b) interior
c) alternate interior
d) alternate exterior
15) In the illustration below of the old chapel building in Yakutat, put an X on the congruent angles
that are found on this building.
Arrows point to congruent angles on building.
Illustration of old chapel building with x's on congruent triangles.
—
296 —
16) In the space below, illustrate or define consecutive interior angles.
Illustration ORConsecutive interior angles are two interior angles lying on the same side of the
transversal cutting across two lines..
17) In the space below, Illustrate OR write a definition for corresponding angles.
OR
When two lines are crossed by another line. the angles in matching corners or positions are
called corresponding angles.
—
297 —
—
298 —
UNIT 5
Triangles
Sealaska Heritage Institute
Grade Level Expectations for Unit 5
Unit 5—Triangles
Alaska State Mathematics Standard A
$VWXGHQWVKRXOGXQGHUVWDQGPDWKHPDWLFDOIDFWVFRQFHSWVSULQFLSOHVDQGWKHRULHV
$VWXGHQWZKRPHHWVWKHFRQWHQWVWDQGDUGVKRXOG
$FRQVWUXFWGUDZPHDVXUHWUDQVIRUPFRPSDUHYLVXDOL]HFODVVLI\DQGDQDO\]H
WKHUHODWLRQVKLSVDPRQJJHRPHWULF¿JXUHVDQG
Alaska State Mathematics Standard C
$VWXGHQWVKRXOGXQGHUVWDQGDQGEHDEOHWRIRUPDQGXVHDSSURSULDWHPHWKRGVWRGH¿QH
DQGH[SODLQPDWKHPDWLFDOUHODWLRQVKLSV
$VWXGHQWZKRPHHWVWKHFRQWHQWVWDQGDUGVKRXOG
&H[SUHVVDQGUHSUHVHQWPDWKHPDWLFDOLGHDVXVLQJRUDODQGZULWWHQSUHVHQWDWLRQV
SK\VLFDOPDWHULDOVSLFWXUHVJUDSKVFKDUWVDQGDOJHEUDLFH[SUHVVLRQV
&UHODWHPDWKHPDWLFDOWHUPVWRHYHU\GD\ODQJXDJH
GLEs
The student demonstrates an understanding of geometric relationships by
>@*LGHQWLI\LQJDQDO\]LQJFRPSDULQJRUXVLQJSURSHUWLHVRISODQH¿JXUHV
‡VXSSOHPHQWDU\FRPSOHPHQWDU\RUYHUWLFDODQJOHV
‡VXPRILQWHULRURUH[WHULRUDQJOHVRIDSRO\JRQ
The student communicates his or her mathematical thinking by
>@36UHSUHVHQWLQJPDWKHPDWLFDOSUREOHPVQXPHULFDOO\JUDSKLFDOO\DQGRUV\PEROLFDOO\WUDQVODWLQJDPRQJWKHVHDOWHUQDWLYHUHSUHVHQWDWLRQVRUXVLQJDSSURSULDWHYRFDEXODU\
V\PEROVRUWHFKQRORJ\WRH[SODLQMXVWLI\DQGGHIHQGVWUDWHJLHVDQGVROXWLRQV
>@36UHSUHVHQWLQJPDWKHPDWLFDOSUREOHPVQXPHULFDOO\JUDSKLFDOO\DQGRUV\PEROLFDOO\FRPPXQLFDWLQJPDWKLGHDVLQZULWLQJRUXVLQJDSSURSULDWHYRFDEXODU\V\PEROVRU
WHFKQRORJ\WRH[SODLQMXVWLI\DQGGHIHQGVWUDWHJLHVDQGVROXWLRQV
Vocabulary
& Definitions
Introduction of Math Vocabulary
polygon
$SRO\JRQLVDSODQHVKDSHZLWKWKUHHRUPRUHVWUDLJKWVLGHV
7ULDQJOHVUHFWDQJOHVWUDSH]RLGVSHQWDJRQVDQGRFWDJRQVDUHD
IHZH[DPSOHVRISRO\JRQV$VNVWXGHQWV³:KLFKRIWKHVHDUHSRO\JRQV"´7KHDQVZHULV±DOORIWKHP
,QQRUWKHUQDUHDVZLWKSHUPDIURVWSHUPDQHQWO\IUR]HQJURXQG
a pattern of polygons often develops on the ground surface.
<RXKDYHWRLPDJLQHWKDWDOOWKHVLGHVDUHVWUDLJKW
triangle
$WULDQJOHLVDQ\SRO\JRQZLWKWKUHHVLGHV
7KHWULDQJOHRQWKLVEDVNHWEDOOKRRSLVDQH[DPSOHRIDWULDQJOH
WKDW\RXFDQVHHDURXQG\RXLQWKHVFKRROWKHFRPPXQLW\RULQ
nature.
interior
The interior is the set of points enclosed by a geometULF¿JXUH,WGRHVQRWLQFOXGHWKHYHUWLFHVRUWKHVLGHVRU
HGJHVRIWKH¿JXUH
The miners in the picture are in the interior of a mine.
—
305 —
Introduction of Math Vocabulary
acute triangle
$QDFXWHWULDQJOHLVDWULDQJOHLQZKLFKDOORIWKHLQWHULRUDQJOHVDUHDFXWHRUOHVVWKDQo.
,QWKHSLFWXUHWKHERRNVRQWKHVKHOIIRUPDQDFXWHWULDQJOH
obtuse triangle
$QREWXVHWULDQJOHLVDWULDQJOHWKDWKDVDQREWXVH
angle as one of its interior angles.
The turnovers in the picture are obtuse triangles.
right triangle
$ULJKWWULDQJOHLVDWULDQJOHZKLFKKDVDULJKW
ƒLQWHULRUDQJOH
,QWKLVSLFWXUHWKHNLWWHQKDVIRXQG
a sheltered spot inside a right triangle.
—
306 —
Introduction of Math Vocabulary
scalene
$VFDOHQHWULDQJOHLVDWULDQJOHIRUZKLFKDOOWKUHHVLGHVKDYHGLIIHUent lengths.
The triangle shown on this railing is a scalene triangle.
isosceles
$QLVRVFHOHVWULDQJOHLVDWULDQJOHZLWKWZRVLGHVWKDWDUHWKHVDPH
length.
This coat hangar is shaped like an isosceles
triangle.
equilateral
$QHTXLODWHUDOWULDQJOHLVDWULDQJOHIRUZKLFKDOOWKUHH
VLGHVDUHWKHVDPHOHQJWKFRQJUXHQW
These candles are shaped like equilateral triangles.
—
307 —
Introduction of Math Vocabulary
equiangular
Equiangular means that all of the angles are equal.
$PXVLFDOWULDQJOHLVDQH[DPSOHRIDQHTXLDQgular triangle.
altitude
7KHDOWLWXGHRIDWULDQJOHLVGLVWDQFHEHWZHHQDYHUWH[RIDWULDQJOHDQGWKHRSSRVLWHVLGH,QWKLVGLDJUDPVHJPHQW³D´LV
the altitude.
$OOWKUHHDOWLWXGHVRIDWULDQJOHDUHVKRZQLQWKLVSLFWXUH
base
The base of a triangle is the side of the triangle that is
SHUSHQGLFXODUWRWKHDOWLWXGH,QWKHGLDJUDPWKHFP
is the base.
,QWKLVSLFWXUHRQHEDVHRIWKHWULangle is on the man’s head!
—
308 —
Introduction of Math Vocabulary
base angle
The base angle of a triangle is either of two angles that have the
base for a side.
,QWKLVLVRVFHOHVWULDQJOHDQJOHV³5´DQG³7´DUHWKHEDVHDQJOHV
vertex angle
7KHYHUWH[DQJOHRIDWULDQJOHLVWKHDQJOHRSSRVLWHWKHEDVH
,QWKLVWULDQJOHDQJOH³%´LVWKHYHUWH[DQJOH
leg
The leg of a triangle is one of its sides. In a right trianJOHWKHWZRVLGHVRSSRVLWHWKHDFXWHDQJOHVDUHFDOOHG
WKHOHJVDQGLQDQLVRVFHOHVWULDQJOHWKHVLGHVRSSRVLWH
the congruent angles are called the legs. Here’s a triangle in which two of the legs really are legs!
hypotenuse
$K\SRWHQXVHLVWKHVLGHRIDULJKWWULDQJOHRSSRVLWHWKHULJKW
angle.
In this picture the bird is sitting on a
hypotenuse
—
309 —
Introduction of Math Vocabulary
exterior angle
(of a triangle)
$QH[WHULRUDQJOHLVDQDQJOHIRUPHGRXWVLGHDWULDQJOH
ZKHQRQHVLGHLVH[WHQGHG,QWKLVGLDJUDPDQJOH:LVDQ
H[WHULRUDQJOH
,QWKHSLFWXUHWKHoDQJOHLVDQH[DPSOHRIDQH[WHULRU
angle of a triangle formed by the spokes of a bicycle wheel.
remote interior angle
³5HPRWH´PHDQVIDUDZD\5HPRWHLQWHULRU
angles of a triangle are the two angles that
DUHIDUWKHVWIURPDQH[WHULRUDQJOH$UHPRWH
LQWHULRUDQJOHLVQRWDGMDFHQWWRWKHH[WHULRU
angle.
—
310 —
Introduction of Math Vocabulary
median
The median of a triangle is a line segment drawn from
RQHYHUWH[WRWKHPLGSRLQWRIWKHRSSRVLWHVLGH
This picture shows the three medians of a triangle.
angle bisector
,QDWULDQJOHDQDQJOHELVHFWRULVDOLQHWKDWGLYLGHVDQLQWHrior angle in half.
7KHYHUWLFDOSRVWRQWKLVURRIWUXVVLVDQH[DPSOHRIDQDQJOHELVHFWRU
—
311 —
—
312 —
Language and Skills
Development
Using the Math Vocabulary Terms
Language & Skills Development
LISTENING
Use the activity pages
from the Student
Support Materials.
Three Sentences
3URYLGHHDFKVWXGHQWZLWKWKUHHEODQNÀDVKFDUGV(DFKVWXGHQWVKRXOGWKHQZULWH
WKHQXPEHUVWRRQKLVKHUFDUGVRQHQXPEHUSHUFDUG6D\WKUHHVHQWHQFHV
only one of which contains a vocabulary word. The students should listen careIXOO\WRWKHWKUHHVHQWHQFHVWKDW\RXVD\$IWHUVD\LQJWKHWKUHHVHQWHQFHVHDFK
student should then show his/her number card that represents the number of
WKH VHQWHQFH ZKLFK FRQWDLQHG WKH YRFDEXODU\ ZRUG 5HSHDW ZLWK RWKHU VHWV RI
sentences.
SPEAKING
Numbered Boxes
%HIRUH WKH DFWLYLW\ EHJLQV SUHSDUH D SDJH WKDW FRQWDLQV RU PRUH ER[HV
1XPEHUHDFKRIWKHER[HV3URYLGHHDFKVWXGHQWZLWKDFRS\RIWKHQXPEHUHG
ER[HV(DFKVWXGHQWVKRXOGWKHQVKDGHLQKDOIRIWKHER[HVZLWKDSHQFLODQ\
WHQER[HV:KHQWKHVWXGHQWVDUHUHDG\PRXQWWKHYRFDEXODU\LOOXVWUDWLRQVRQ
WKHFKDONERDUGDQGVD\WKHQXPEHURIDER[EHWZHHQDQGWRRQHRIWKH
VWXGHQWV7KHVWXGHQWVKRXOGORRNRQKLVKHUIRUPWRVHHLIWKDWER[QXPEHULV
VKDGHGLQ ,I WKDW ER[ LV VKDGHG LQ WKH VWXGHQW PD\ ³SDVV´ WR DQRWKHU SOD\HU
+RZHYHU LI WKH ER[ LV QRW VKDGHGLQ KHVKH VKRXOG VD\ D FRPSOHWH VHQWHQFH
DERXWDYRFDEXODU\LOOXVWUDWLRQ\RXSRLQWWR7KHVWXGHQWVPD\H[FKDQJHSDJHV
SHULRGLFDOO\GXULQJWKLVDFWLYLW\5HSHDWXQWLOPDQ\VWXGHQWVKDYHUHVSRQGHGLQ
this way.
READING
Circle of Words
%HIRUHWKHDFWLYLW\EHJLQVSUHSDUHDSDJHWKDWFRQWDLQVWKHVLJKWZRUGV3URYLGH
each student with a copy of the page. The students should cut the sight words
IURPWKHLUSDJHV:KHQDVWXGHQWKDVFXWRXWWKHVLJKWZRUGVKHVKHVKRXOGOD\
WKHPRQKLVKHUGHVNLQDFLUFOH7KHQHDFKVWXGHQWVKRXOGSODFHDSHQRUSHQFLO
in the center of the circle of sight word cards. Each student should spin the pen/
SHQFLO6D\DVLJKWZRUG$Q\VWXGHQWRUVWXGHQWVZKRVHSHQVSHQFLOVDUHSRLQWLQJ
WRWKHVLJKWZRUG\RXVDLGVKRXOGFDOO³%,1*2´7KHVWXGHQWRUVWXGHQWVVKRXOG
WKHQUHPRYHWKRVHVLJKWZRUGVIURPWKHLUGHVNV&RQWLQXHLQWKLVZD\XQWLODVWXdent or students have no sight words left on their desks.
Use the activity pages
from the Student
Support Materials.
Every Second Letter
:ULWHDVLJKWZRUGRQWKHFKDONERDUGRPLWWLQJHYHU\VHFRQGOHWWHU3URYLGHWKH
students with writing paper and pens. The students should look at the incomplete word on the chalkboard and then write the sight word for it on their papers.
5HSHDWXVLQJRWKHUVLJKWZRUGV
WRITING
Use the activity pages
from the Student
Support Materials.
7KLVDFWLYLW\PD\DOVREHGRQHLQWHDPIRUP,QWKLVFDVHKDYHWKHLQFRPSOHWH
ZRUGVSUHSDUHGRQVHSDUDWHÀDVKFDUGV0RXQWRQHRIWKHFDUGVRQWKHFKDONERDUG :KHQ \RX VD\ ³*R´ WKH ¿UVW SOD\HU IURP HDFK WHDP PXVW UXVK WR WKH
chalkboard and write the sight word for it - adding all of the missing letters.
5HSHDWXQWLODOOSOD\HUVKDYHSDUWLFLSDWHG
—
315 —
Student Support
Materials
—
319 —
—
321 —
—
323 —
—
325 —
—
327 —
—
329 —
—
331 —
—
333 —
—
335 —
—
337 —
—
339 —
—
341 —
—
343 —
—
345 —
—
347 —
—
349 —
—
351 —
—
353 —
—
355 —
—
357 —
True-False Sentences
(Listening and/or Reading Comprehension)
1. $SRO\JRQDOZD\VKDVVWUDLJKWVLGHV
2. The three sides of a triangle are always the same length.
6LGHVDQGYHUWLFHVDUHSDUWRIWKHLQWHULRURIDJHRPHWULF¿JXUH
,QDQDFXWHWULDQJOHDOOWKUHHDQJOHVPXVWEHDFXWH
,QDQREWXVHWULDQJOHDOOWKUHHDQJOHVDUHJUHDWHUWKDQo.
,QDULJKWWULDQJOHWZRVLGHVDUHSHUSHQGLFXODU
7. ,QDVFDOHQHWULDQJOHWKHEDVHLVDOZD\VWKHVDPHOHQJWKDVWKHDOWLWXGH
$ULJKWWULDQJOHFDQQRWDOVREHDQLVRVFHOHVWULDQJOH
9. Equiangular triangles have three angles that are the same size.
10. ,IWKHWKUHHVLGHVRIDWULDQJOHDUHFRQJUXHQWLWLVDQHTXLODWHUDOWULDQJOH
11. The base of a triangle forms a right angle with the altitude.
12. The longest side of a triangle is also known as its altitude.
$EDVHDQJOHRIDWULDQJOHKDVWKHEDVHRIWKHWULDQJOHDVRQHRILWVVLGHV
7KHDQJOHRIDWULDQJOHRSSRVLWHLWVEDVHLVFDOOHGWKHYHUWH[DQJOH
Most triangles have two legs.
Every triangle has a hypotenuse.
17. $QH[WHULRUDQJOHRIDWULDQJOHLVFRPSOHPHQWDU\WRLWVDGMDFHQWLQWHULRUDQJOH
)RUHYHU\H[WHULRUDQJOHWKHUHDUHWZRUHPRWHLQWHULRUDQJOHV
19. $PHGLDQLVDOZD\VSHUSHQGLFXODUWRWKHVLGHWKDWLWELVHFWV
20. ,QDWULDQJOHWKHDQJOHELVHFWRUDOVRELVHFWVWKHVLGHRSSRVLWHWKDWDQJOH
$QVZHUV7))7)7))777)77)))7))
1. $Q\¿JXUHZLWKWKUHHRUPRUHVWUDLJKWOLQHVLVDSRO\JRQ
2. $WULDQJOHKDVWKUHHVLGHVDQGWKUHHDQJOHV
7KHLQWHULRURIDVKDSHRU¿JXUHLQFOXGHVDOORIWKHSRLQWVHQFORVHGE\LW
You might have a right angle in an acute triangle.
$QREWXVHWULDQJOHKDVRQHREWXVHDQJOH
$OORIWKHDQJOHVLQDULJKWWULDQJOHDUHULJKWDQJOHV
7. $OOWKUHHVLGHVRIDVFDOHQHWULDQJOHDUHGLIIHUHQWOHQJWKV
Isosceles triangles have two legs that are the same length.
9. $QREWXVHWULDQJOHFRXOGDOVREHDQHTXLDQJXODUWULDQJOH
10. $OOLVRVFHOHVWULDQJOHVDUHHTXLODWHUDO
11. The base of a triangle is always the side toward the bottom of the page.
12. 7KHDOWLWXGHRIDWULDQJOHLVWKHVKRUWHVWVHJPHQWWKDWFDQEHGUDZQIURPDYHUWH[WRWKHRSSRVLWHVLGH
The base angle of a triangle is opposite its base.
$WULDQJOHFDQKDYHRQO\RQHYHUWH[DQJOH
The side of a triangle is also the leg of a triangle.
The side opposite the right angle is the hypotenuse of a right triangle.
17. $QH[WHULRUDQJOHRIDWULDQJOHLVIRUPHGE\H[WHQGLQJRQHVLGHRIWKHWULDQJOH
$UHPRWHLQWHULRUDQJOHLVDGMDFHQWWRDQRWKHUUHPRWHLQWHULRUDQJOH
19. ,QDWULDQJOHDPHGLDQELVHFWVRQHRIWKHVLGHV
20. The angle bisector of a triangle divides one of the interior angles in half.
$QVZHUV)77)7)77)))7))777)77
—
359 —
Match the Halves
1. Squares and rectangles are types of
$$QDFXWHWULDQJOH
$Q\SRO\JRQZLWKWKUHHVLGHV
B. Equiangular.
7KHLQWHULRURIDWULDQJOHGRHVQRWLQFOXGH
&$EDVHDQJOH
,IQRQHRIWKHDQJOHVRIDWULDQJOHPHDVXUH
more than 90o it is
$WULDQJOHZLWKDZLGHDQJOHJUHDWHUWKDQo is
'$OHJRIWKHWULDQJOH
,IWZRVLGHVRIDWULDQJOHDUHSHUSHQGLFXODULWLV
)+DVWREHDWULDQJOH
7. In a scalene triangle
*$QH[WHULRUDQJOHLVIRUPHG
,IWZRVLGHVRIDWULDQJOHDUHHTXDOLQOHQJWKLW
is
9. If all three angles of a triangle have the same
PHDVXUHLWLV
10. In an equilateral triangle
H. None of the sides are the same length.
J. Polygons.
11. The base of a triangle
K. Into two equal parts.
12. The altitude of a triangle is the shortest segment from
$QDQJOHIRUZKLFKWKHEDVHRIDWULDQJOH
forms one side is
$YHUWH[DQJOHLV
/$PHGLDQ
$Q\VLGHRIDVFDOHQHWULDQJOHLV
O. The sides and the vertices.
$ULJKWWULDQJOHLVWKHRQO\W\SHRIWULDQJOHWKDW
3$QREWXVHWULDQJOH
:KHQDVLGHRIDWULDQJOHLVH[WHQGHG
41RWDGMDFHQWWRWKHH[WHULRUDQJOH
$UHPRWHH[WHULRUDQJOHLV
5$QLVRVFHOHVWULDQJOH
$VLGHRIDWULDQJOHLVELVHFWHGE\
6$YHUWH[WRWKHRSSRVLWHVLGH
$QDQJOHELVHFWRUGLYLGHVDQDQJOH
7$ULJKWWULDQJOH
E. Has a hypotenuse.
I. Opposite the base of a triangle.
0$OORIWKHVLGHVDUHWKHVDPHOHQJWK
N. Is perpendicular to its altitude.
$QVZHUV-)2$37+5%016&,'(*4/
20K
—
360 —
'H¿QLWLRQV
polygon - a plane shape with three or more straight sides.
triangle - any polygon with three sides.
interior - WKHVHWRISRLQWVHQFORVHGE\DJHRPHWULF¿JXUH
acute (triangle) - DWULDQJOHLQZKLFKDOORIWKHLQWHULRUDQJOHVDUHDFXWHRUOHVVWKDQo.
obtuse (triangle) - a triangle that has an obtuse angle as one of its interior angles.
right (triangle) - DWULDQJOHZKLFKKDVDULJKWƒLQWHULRUDQJOH
scalene (triangle) - a triangle for which all three sides have different lengths.
isosceles (triangle) - a triangle with two sides that are the same length.
equilateral (triangle) - DWULDQJOHIRUZKLFKDOOWKUHHVLGHVDUHWKHVDPHOHQJWKFRQJUXHQW
equiangular (triangle) - a triangle for which all three angles are congruent.
altitude - WKHGLVWDQFHEHWZHHQDYHUWH[RIDWULDQJOHDQGWKHRSSRVLWHVLGH
base - the side of the triangle that is perpendicular to the altitude.
base angle - either of two angles of a triangle that have the base for a side.
vertex angle - the angle opposite the base of a triangle.
leg - one of the sides of a triangle.
hypotenuse - the side of a right triangle opposite the right angle.
exterior angle (of a triangle) - DQDQJOHIRUPHGRXWVLGHDWULDQJOHZKHQRQHVLGHLVH[WHQGHG
remote interior angle (of a triangle) - DQDQJOHRIDWULDQJOHWKDWLVQRWDGMDFHQWWRDQH[WHULRU
angle.
median (of a triangle) - DOLQHVHJPHQWGUDZQIURPRQHYHUWH[WRWKHPLGSRLQWRIWKHRSSRVLWH
side.
angle bisector - a line that divides an interior angle of a triangle in half.
—
361 —
Which Belongs
1. ,QDULJKWWULDQJOHWKHEDVHK\SRWHQXVHDOWLWXGHLVRSSRVLWHWKHYHUWH[
2. 7KHFDSLWDOOHWWHU³$´LVDQLVRVFHOHVDVFDOHQHDULJKWWULDQJOH
$QLQWHULRUH[WHULRUREWXVHDQJOHLQFOXGHVSRLQWVHQFORVHGE\DJHRPHWULF¿JXUH
:KHQWZROHJVRIDWULDQJOHDUHSHUSHQGLFXODULWLVDQDFXWHREWXVHULJKWWULDQJOH
7KHYHUWH[OHJEDVHRIDWULDQJOHLQWHUVHFWVWKHDOWLWXGHWRIRUPDULJKWDQJOH
$VHJPHQWWKDWGLYLGHVDQDQJOHLQWRWZRHTXDOSDUWVLVDQDOWLWXGHDQJOHELVHFWRU
PHGLDQ
7. $OORIWKHVLGHVRIDVFDOHQHREWXVHDFXWHWULDQJOHKDYHGLIIHUHQWOHQJWKV
7KHWKUHHDQJOHVRIDQDFXWHREWXVHHTXLDQJXODUWULDQJOHDUHFRQJUXHQW
9. $ULJKWWULDQJOHSRO\JRQK\SRWHQXVHPLJKWKDYHVL[VLGHV
10. 7RIRUPDQH[WHULRUUHPRWHLQWHULRUYHUWH[DQJOHRQHRIWKHVLGHVRIDWULDQJOHLV
H[WHQGHG
11. 7KHPHGLDQDOWLWXGHDQJOHELVHFWRULVDWDo angle to the base of a triangle.
12. $QDFXWHVFDOHQHREWXVHWULDQJOHFDQQRWKDYHDo angle.
,QDWULDQJOHDUHPRWHLQWHULRUDQJOHYHUWH[DQJOHEDVHDQJOHLVQRWDGMDFHQWWRWKH
H[WHULRUDQJOH
$Q\SRO\JRQZLWKWKUHHVLGHVLVDWULDQJOHPHGLDQYHUWH[DQJOH
$QREWXVHVFDOHQHLVRVFHOHVWULDQJOHFDQQRWEHDULJKWWULDQJOH
7KHOHJYHUWH[DQJOHDOWLWXGHRIDWULDQJOHLVRSSRVLWHWKHEDVH
17. ,IDWULDQJOHLVULJKWREWXVHHTXLODWHUDOLVFDQQRWEHDVFDOHQHWULDQJOH
7KHEDVHRIDWULDQJOHIRUPVRQHVLGHRIDQDOWLWXGHDQJOHELVHFWRUEDVHDQJOH
19. ,IDVLGHRIDULJKWWULDQJOHLVQRWWKHK\SRWHQXVHLWLVFDOOHGDOHJPHGLDQYHUWH[
20. 7KHEDVHRIDWULDQJOHFRXOGEHGLYLGHGLQWRWZRHTXDOSDUWVE\DK\SRWHQXVHPHGLDQ
DQJOHELVHFWRU
11. $OWLWXGH
12. $FXWH
5HPRWHLQWHULRUDQJOH
Triangle
Obtuse
9HUWH[DQJOH
17. Equilateral
Base angle
19. Leg
20. Median
1. Base
2. Isosceles
Interior
5LJKW
Base
$QJOHELVHFWRU
7. Scalene
Equiangular
9. Polygon
10. ([WHULRU
—
362 —
Multiple Choice
$QHQFORVHG¿JXUHPDGHXSRIWKUHHVHJPHQWVLVD
DVFDOHQHWULDQJOH
EWULDQJOH
FSRO\JRQ
2. The longest side of a right triangle is its
DK\SRWHQXVH
EDOWLWXGH
FEDVH
7KHVLGHRIDWULDQJOHWKDWLVRSSRVLWHWKHYHUWH[DQJOHLVWKH
DK\SRWHQXVH
EEDVH
FOHJ
$VHJPHQWWKDWGLYLGHVDQDQJOHLQKDOILV
DDPHGLDQ
EDQDOWLWXGH
FDQDQJOHELVHFWRU
$ULJKWWULDQJOHFDQQRWDOVREH
DHTXLDQJXODU
EVFDOHQH
FLVRVFHOHV
:KLFKRIWKHVHDQJOHVLVRSSRVLWHWKHEDVHRIDWULDQJOH
DYHUWH[DQJOH
EEDVHDQJOH
FH[WHULRUDQJOH
$OORIWKHSRLQWVHQFORVHGE\DJHRPHWULF¿JXUHPDNHXSLWV
DH[WHULRU
EDOWLWXGH
FLQWHULRU
<RXPLJKW¿QGDo angle in an
DDFXWHWULDQJOH
EULJKWWULDQJOH
FREWXVHWULDQJOH
$VHJPHQWWKDWGLYLGHVRQHVLGHRIDWULDQJOHLQWRWZRHTXDOSDUWVLVFDOOHG
DDQDQJOHELVHFWRU
EDPHGLDQ
FDQLVRVFHOHV
$WULDQJOHLQZKLFKDOORIWKHDQJOHVDUHVPDOOHUWKDQULJKWDQJOHVLVDQ
DDFXWHWULDQJOH
EREWXVHWULDQJOH
FLVRVFHOHVWULDQJOH
—
363 —
$VLGHRIDQLVRVFHOHVWULDQJOHWKDWLVQRWWKHEDVHLVFDOOHGD
DDOWLWXGH
EYHUWH[VLGH
FOHJ
,IDWULDQJOHKDVWZRVLGHVWKDWDUHSHUSHQGLFXODULWLV
DDQLVRVFHOHVWULDQJOH
EDULJKWWULDQJOH
FDVFDOHQHWULDQJOH
:KHQDWOHDVWWZRVLGHVRIDWULDQJOHDUHFRQJUXHQWWKHWULDQJOHLV
DLVRVFHOHV
EHTXLODWHUDO
FHTXLDQJXODU
,IDOOWKUHHVLGHVRIDWULDQJOHDUHWKHVDPHLWLV
DHTXLDQJXODU
ELVRVFHOHV
FHTXLODWHUDO
7KHKHLJKWRIDWULDQJOHIURPLWVEDVHLVFDOOHGLWV
DDOWLWXGH
EPHGLDQ
FK\SRWHQXVH
$QHQFORVHG¿JXUHZLWKVWUDLJKWFRSODQDUVLGHVLVFDOOHGD
DSRO\JRQ
EH[WHULRUDQJOH
FPHGLDQ
$QDQJOHRIDWULDQJOHWKDWLVQRWDEDVHDQJOHZRXOGEHWKH
DUHPRWHLQWHULRUDQJOH
EPHGLDQDQJOH
FYHUWH[DQJOH
$QDQJOHWKDWIRUPHGE\WKHH[WHQVLRQRIRQHRIDWULDQJOH¶VVLGHVLVLWV
DYHUWH[DQJOH
EH[WHULRUDQJOH
FEDVHDQJOH
,IDQDQJOHGRHVQRWIRUPDOLQHDUSDLUZLWKWKHH[WHULRUDQJOHRIDWULDQJOHLWZRXOGEHD
DYHUWH[DQJOH
EUHPRWHLQWHULRUDQJOH
FEDVHDQJOH
,IDWULDQJOHLVQRWDQLVRVFHOHVWULDQJOHLWLV
DVFDOHQH
EULJKW
FHTXLODWHUDO
$QVZHUV
EDEFDDFFEDFEDFDDFEED
—
364 —
Complete the Sentence
1. 7KHVHWRISRLQWVHQFORVHGE\DJHRPHWULF¿JXUHLVLWVBBBBBBBBBBBBB
2. $WULDQJOHLVDBBBBBBBBBBBBBBBBBBBBBLIWZRRILWVVLGHVDUHSHUSHQGLFXODU
6HJPHQW$'ZDVWKHBBBBBBBBBBBBBBBBBBBBRIWULDQJOH$%&EHFDXVHLWGLYLGHGDQJOH$
into two equal parts.
$Q\VLGHRIDWULDQJOHLVDBBBBBBBBBBBBDOWKRXJKWKDWWHUPLVQRWXVXDOO\XVHGIRUD
hypotenuse or a base.
Three sides of unequal lengths would make up a ______________triangle.
)URPWKHIURQWRIWKHKRXVHWKHURRIZDVVKDSHGOLNHDQBBBBBBBBBBBBBBBBBBBWULDQJOH
because the two sides were of equal lengths.
7. $FRDWKDQJHUKDVPRUHRUOHVVWKHVKDSHRIDQBBBBBBBBBBBBBWULDQJOH
,QDWULDQJOHDBBBBBBBBBBBBBBBBBBBBBBLVQRWDGMDFHQWWRLWVH[WHULRUDQJOH
9. $OORIWKHDQJOHVRIWKDWWULDQJOHKDYHWKHVDPHPHDVXUHVRLWLVDQBBBBBBBBBBBBBBWULangle.
10. (DFKVLGHRIDQBBBBBBBBBBBBBBBBBBBBBBBBWULDQJOHKDGDOHQJWKRIFHQWLPHWHUV
11. $WULDQJOH¶VWKUHHDQJOHVPHDVXUHooDQGoVRLWLVDQBBBBBBBBBBWULDQJOH
12. $BBBBBBBBBBBBBBBBBBBBBRIDWULDQJOHELVHFWVWKHEDVHRIWKHWULDQJOH
:KHQ\RX¿QGWKHDOWLWXGHRIDWULDQJOH\RXPHDVXUHSHUSHQGLFXODUWRWKH
_______________________.
7KHVKRUWHVWGLVWDQFHIURPWKHEDVHRIDWULDQJOHWRWKHRSSRVLWHYHUWH[LVWKH
_______________.
$QDQJOHRIDWULDQJOHPXVWEHWKHBBBBBBBBBBBBBBBBBLILWLVQRWDEDVHDQJOH
$BBBBBBBBBBBBBBBBBBBBBLVDW\SHRISRO\JRQZLWKH[DFWO\WKUHHVLGHV
17. ,QDULJKWWULDQJOHWKHBBBBBBBBBBBBBBBBBBBLVQRWSHUSHQGLFXODUWRDQ\RWKHUVLGH
,IDVLGHRIDQWULDQJOHLVH[WHQGHGDQBBBBBBBBBBBBBBBBBBBBBBLVFUHDWHG
19. $BBBBBBBBBBBBBBBBBBBBBBBBBBBPLJKWKDYHHOHYHQVLGHV
20. ,IWKHEDVHRIDWULDQJOHIRUPVRQHVLGHRIDQDQJOHWKDWDQJOHLVFDOOHGDBBBBBBBBBBBBB
$QVZHUV
1. interior
2. right triangle
angle bisector
leg
scalene
isosceles
7. obtuse
remote interior angle
9. equiangular
10. equilateral
11. acute
12. median
base
altitude
YHUWH[DQJOH
triangle
17. hypotenuse
H[WHULRUDQJOH
19. polygon
20. base angle
—
365 —
Creative Writing
7KLVSLFWXUHZDVWDNHQLQWKH¶VZKHQWKH¿UVWEULGJHIURP-XQHDXWR'RXJODV,VODQG
was under construction.
—
366 —
Place-Based Practice Activity
'LYLGHVWXGHQWVLQWRVPDOOJURXSVDQGDVVLJQHDFKJURXSRQHW\SHRIWUL
angle:
Scalene
Isosceles
Equilateral
$FXWH
Obtuse
5LJKW
(DFKJURXSVKRXOG¿QGDJRRGH[DPSOHRIWKHLUWULDQJOHVRPHZKHUHLQWKH
VFKRRORUFRPPXQLW\DQGVNHWFKRUSKRWRJUDSKLW7KHQWKH\VKRXOGODEHODV
many of the following as possible on their triangle:
Base
$OWLWXGH
Median
Base angle
9HUWH[DQJOH
([WHULRUDQJOH
5HPRWHLQWHULRUDQJOH
$QJOHELVHFWRU
Leg
(DFKJURXSVKRXOGVKDUHWKHLUZRUNZLWKWKHFODVVE\PDNLQJDSRVWHURUDEULHI
class presentation.
$VNVWXGHQWVLQVPDOOJURXSVWRFKRRVHRQHRIWKHVHWRSLFV
$UW
&RQVWUXFWLRQ
Navigation
$VNHDFKJURXSWRGRUHVHDUFKWR¿QGRXWKRZWULDQJOHVDUHLPSRUWDQWRUUHOHYDQW
WRWKHWRSLFWKH\FKRVH$VWKH\UHVHDUFKWKH\VKRXOGLGHQWLI\WKHW\SHVDQG
SDUWVRIWULDQJOHVWKDWWKH\¿QGRXWDERXW
—
367 —
—
368 —
Unit Assessment
—
369
9 —
—
370 —
Geometry: Unit 5-Triangles Quiz
Name: ___________________
Date: ___________________
Match the key vocabulary word on the left with correct shape on the right. Put the letter of the shape,
in front of the word it matches.
a. illustration of scalene triangle
1) _____ polygon
2) _____ acute triangle
3) _____ right triangle
b.
4) _____ scalene triangle
5) _____ isosceles triangle
illustration of acute triangle
6) _____ equilateral triangle
7) _____ equiangular triangle
c.
illustration of right triangle
d.
illustration of equiangular triangle
e.
illustration of polygon
f.
illustration of equilateral triangle
g.
illustration of isosceles triangle
—
371 —
Illustrations: In the next three text items, follow the instructions for each item.
8) Look at the shape below and label it in the space provided.
Matt...insert an illustration of a triangle
____________________________
label the shape
9) In the illustration below, put an X on the base of the triangle.
illustration of triangle
10) in the space below, draw a picture showing an angle bisector.
11) In the illustration below, put an X on the vertex angle.
illustration of triangle
—
372 —
Fill in the blank: Complete each sentence with the word that fits best. Choose the word from
the Word Bank.
Word Bank
angle bisector
base
base
exterior
hypotenuse
leg
median
remote interior
vertex
12) The
13) A /an
14) A/an
extended.
15)
of a triangle is the angle opposite the base.
I s the side of a right triangle opposite the right angle.
angle of a triangle is an angle formed outside a triangle when one line is
angles of a triangle are the two angles that are farthest from an exterior angle.
16) The
angle of a triangle is either of two angles that have the base for a side.
17) The
of a triangle is a line segment drawn from one vertex to the midpoint of the
opposite side.
18) The
angle of a triangle is either of two angles that have the base for the side.
True/False: Read each item carefully and decide if the statement is true or false. Circle the
correct answer.
19) The exterior is the set of points enclosed by a geometric figure.
a) True
b) False
20) Triangles, rectangles, trapezoids, pentagons, and octagons are all examples of polygons.
a) True
b) False
—
373 —
—
374 —
Geometry: Unit 5-Triangles Quiz
Name: ___________________
Date: ___________________
Match the key vocabulary word on the left with correct shape on the right. Put the letter of the shape,
in front of the word it matches.
1)
e
polygon
2)
b
acute triangle
3)
c
right triangle
4)
a
scalene triangle
5)
g
isosceles triangle
6)
f
equilateral triangle
7)
d
equiangular triangle
a. illustration of scalene triangle
b. llustration of acute triangle
C
illustration of right triangle
d. illustration of equiangular triangle
e. Illustration of polygon
f. illustration of equilateral triangle
g. llustration of isosceles triangle
—
375 —
Illustrations: In the next three text items, follow the instructions for each item.
8) Look at the shape below and label it in the space below it.
Matt...insert an illustration of a triangle
___________________________________
Triangle
9) In the illustration below, put an X on the base of the triangle.
illustration of triangle
illustration of triangle with an X on the base.
10) in the space below, draw a picture showing an angle bisector.
Show illustration of angle bisector.
11) In the illustration below, put an X on the vertex angle.
illustration of triangle
illustration of triangle with an X on the vertex
—
376 —
Fill in the blank: Complete each sentence with the word that fits best. Choose the word from
the Word Bank.
Word Bank
angle bisector
base
base
exterior
hypotenuse
leg
median
remote interior
vertex
12) The leg of a triangle is the angle opposite the base.
13) A /an hypotenuse is the side of a right triangle opposite the right angle.
14) A/an exterior angle of a triangle is an angle formed outside a triangle when one line is
extended.
15)
remote interior angles of a triangle are the two angles that are farthest from an exterior
angle.
16) The base angle of a triangle is either of two angles that have the base for a side.
17) The median of a triangle is a line segment drawn from one vertex to the midpoint of the
opposite side.
18) The base angle of a triangle is either of two angles that have the base for the side.
True/False: Read each item carefully and decide if the statement is true or false. Circle the
correct answer.
19) The exterior is the set of points enclosed by a geometric figure.
a) True
b) False
20) Triangles, rectangles, trapezoids, pentagons, and octagons are all examples of polygons.
a) True
b) False
—
377 —
—
378 —
Related documents