Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
SNe (Informal) workshop - Ferrara April 2004 Astrophysical (natural) Explosive Devices Thermonuclear SNe Gravitational collapse He-detonation C-deflagration C-delayed detonation Induced Core collapse (nuclear runaway fails) Pair instability, core collapse & O explosion (core collapse fails) SNe Classification II p Type II Core collapse of massive stars II L SNe I b (strong He) I c (weak He) Type I I a (strong Si) Thermonuclear explosion based on spectra and light curves morphologies Type Ia light curve Riess et al. , 1997 Brighter Slower Decline Dimmer Faster Decline standard candles visible up to z ~ 1 DL High-z Team (Brian Schmidt & co) Supernova Cosmology Project (Saul Perlmutter & co.) 0.25 mag fainter than for an EMPTY Universe Fainter Further z The Universe is Accelerating 1 qo M 2 Type IIp light curve: potential standard candles up to z~5 (with NGST) The virial theorem: stellar core evolution 2 M dM GM G q 3P V r R M R M q d 1.5 r M M R r r g 0 1 r 4 3 PM R r M 2 4 2 3 r 0 log P Non-degenerate r4/3 relativistic M2 M1 r5/3 Non-relativistic log r MCh 5.83Ye2 if Ye 0.5 MCh 1.457 Stellar evolution M<0.8 M t>1/HO 0.8<M/M<8 15 Gyr<t<30 Myr 0.5<Mf /M<1.1 CO WD 8<M/M<11 t.1030 Myr Mf =1.2-1.3 M ONeMg WD 11<M/M<100 t. 1-10 Myr Mf =1.2-2.5 M Fe (Ye.0.45) collapse NS or BH M>100 M t#1 Myr O (pair jnstability) (Ye=0.5) may or may not explode He-burning: the competition between 3a -> 12C and 12C+a ->16O+g 4He 5 M Z=0.02 Y=0.28 12C 16O Na<s,v> (10-15 cm3mol-1s-1) for T9=0.2 Low ECM (keV) Adop. high Kunz et al 2001 5.25 7.58 10.2 Buchman n 1996 3.04 7.04 13.04 NACRE 5.44 9.11 12.8 3195 2685 2418 CF85 4.74 Jp 10957 0- 10367 4+ 9847 9580 2+ 1- 8872 2- 7117 6917 12+ 6130 3- 6049 0+ 0 0+ Q = 7.162 MeV Gamow peack energies 12C+4He CF88 Ex (keV) -45 -245 11.3 Not an error bar 16O level scheme Carbon left in the core 0.8M < M < 25M (from Imbriani et al. 2001). Core Collapse CO WD ONeMg WD High rate – empty circle Low rate - Black circle 1 Hp overshoot – triangle Breathing pulses - square Supernovae Ia Bright Homogeneous No evolutionary effects Thermonuclear Explosion of a CO WD M~MChandrasekhar L ~ 1.4 M Light Curve 56Ni time 56Co 56 Fe L MNi Roche lobe overflow H accreting WDs Single Degenerate system: WD+RG RG MS a) GWR: ang. momentum loss b) secondary tidal disruption Merging scenario: Double Degenerate system: CO+CO c) accretion 10-5 Myr-1 White Dwarf interior: C and O profiles High rate 12C(a,g)16O Low rate 12C(a,n)16O and the final mass of 56Ni DM(56Ni)=10% Rate HIGH LOW -19.21 -19.30 Rise time 18.0 d 15.3 d MV Observed: 18± 0.4 d from Dominguez, Hoflich, Straniero 2002 HIGH Rate C/O Massive stars from Limongi, Chieffi & Straniero 2001 g e-,e+ g e- n,n n,n Degenerate electrons Thermal contribution Pressure contributions At the onset of the core collapse < Ye > 0.45 M Ch 1.18 • e-+p n+ne (10 MeV) • 56Fe+g 13a+4n (124 MeV) COLLAPSE, BOUNCE & STALL 1051 erg lost each 0.1 Mo hard core (1014 g/cm3) +0.2 ms -0.5 ms +2.0 ms subsonic | supersonic 1012 g/cm3 3x1014 g/cm3 Ye and 12C(a,g)16O Low rate (solid) High rate (dotted) < Ye > 0.45 M Ch 1.18 from Imbriani et al. 2001 M-R relation: high rate = shorter C burning = more compact progenitor Observable consequences: SN yields 1) Intermediate-light elements, Ne, Na, Mg, and Al (which are produced in the C convective shell), scale directly with the C abundance left by the He burning because they depend directly on the amount of available fuel. 2) All the elements whose yields are produced by any of the four explosive burnings (complete explosive Si burning, incomplete explosive Si burning, explosive O burning, and explosive Ne burning) scale inversely with the C abundance left by the He burning because the mass-radius relation in the deep interior of a star steepens as the C abundance reduces. 3) A low C abundance (about 0.2 by mass fraction), or an high rate, is required to obtain yields with a scaled solar distribution. 5) A low C abundance leads to smaller iron cores, thus favoring the explosion.