Download Exercises on manipulating means and standard deviations

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Exercises on manipulating means and
standard deviations
Lily Yen
Due January 12th, 2015
1. Show that for any data set {xi }ni=1 ,
a.
n
X
(xi − x̄) = 0.
i=1

b. s2 =
n
X
1 
1
x2i −
n − 1 i=1
n
n
X
!2 
xi
.
i=1
P
P
Solution
a. Consider that ni=1 xi = nx̄. Therefore ni=1 (xi − x̄) =
Pn 1. P
n
i=1 xi −
i=1 x̄ = nx̄ − nx̄ = 0.
b. Since
n
X
(xi − x̄)2 =
i=1
n
X
(x2i − 2xi x̄ + x̄2 ) =
i=1
=
n
X
=
i=1
=
n
X
x2i − 2x̄
n
X
n
X
xi +
i=1
n
X
x̄2
i=1
xi + nx̄2
i=1
2
x2i −
n
x2i −
i=1
it follows that s2 =
x2i − 2x̄
i=1
i=1
n
X
n
X
1
n−1
1
n
n
X
!2
xi
i=1
n
X
1
+
n
n
X
!2
xi
i=1
!2
xi
,
i=1
Pn
2
i=1 (xi − x̄) =
1
1
n−1
P
n
i=1
x2i −
1
n
P
2
( ni=1 xi ) .
2. Prove that if a data set {xi }ni=1 has mean x̄ and standard deviation sx ,
then
a. if yi = xi + h, then ȳ = x̄ + h and sy = sx ;
b. if yi = cxi , then ȳ = cx̄ and sy = csx ;
c. if zi =
xi −x̄
,
sx
Solution 2.
and
then z̄ = 0 and sz = 1.
a. ȳ =
1
n
Pn
i=1
yi =
1
n
Pn
i=1 (xi +h)
n
s2y
=
1
n
Pn
i=1
xi + n1 n h = x̄+h
n
1 X
1 X
(yi − ȳ)2 =
(xi + h − (x̄ + h))2
=
n − 1 i=1
n − 1 i=1
n
1 X
=
(xi − x̄)2 = s2x ,
n − 1 i=1
so sy = sx .
P
b. ȳ = n1 ni=1 yi =
1
n
Pn
i=1
cxi = c n1
Pn
n
s2y
i=1
xi = cx̄, and
n
1 X
1 X
=
(yi − ȳ)2 =
(cxi − cx̄)2
n − 1 i=1
n − 1 i=1
n
=
n
1 X 2
1 X
c (xi − x̄)2 = c2
(xi − x̄)2 = c2 s2x ,
n − 1 i=1
n − 1 i=1
so sy = csx .
c. This follows immediately from the previous two parts with h = −x̄ and
c = s1x .
3. A sample of 20 resistors yielded a mean value of 44.6 Ω and a standard
deviation of 1.3 Ω.
a. If one more resistor of 52 Ω is added to the sample, what are the mean
and standard deviation of the 21 resistors?
b. If the original sample of 20 resistors is combined with a sample of 10
resistors that had a mean of 48.3 Ω and standard deviation of 1.9 Ω,
calculate the mean and standard deviation of the combined sample of
30 resistors.
2
Solution
Pn3.
1
i=1
n
a. Consider first the original n = 20 resistors. Since x̄ =
xi ,
n
X
xi = nx̄ = 20 · 44.6 Ω = 892 Ω.
i=1
2
Moreover, since s =
n
X
x2i
i=1
1
n−1
P
n
i=1
x2i
1
= (n − 1)s +
n
2
= 19(1.3 Ω)2 +
−
1
n
Pn
2
( i=1 xi ) , it follows that
n
X
!2
xi
i=1
1
(892 Ω)2 = 39 815.31 Ω2 .
20
P
P
2
Adding the 21st resistor, 21
944 Ω and 21
i=1 = 892 Ω + 52 Ω = P
i=1 xi =
21
2
2
1
1
39 815.31 Ω +(52 Ω)2 = 42 519.31 Ω . Thus x̄ = 21 i=1 xi = 21 ·944 Ω =
45.0 Ω and

!2 
21
21
X
X
1 
1
1
1
2
2
2
2
s =
x −
42 519.31 Ω − (944 Ω)
xi  =
20 i=1 i 21 i=1
20
21
= 4.21 Ω2 ,
so s = 2.05 Ω.
b. As in the previous part, for the original 20 resistors,
20
X
xi = 892 Ω and
i=1
20
X
x2i = 39 815.31 Ω2 .
i=1
In a similar manner, for the sample of 10 resistors,
10
X
xi = 10 · 48.3 Ω = 483 Ω
i=1
and
10
X
i=1
x2i = 9(1.9 Ω)2 +
1
(483 Ω)2 = 23 361.39 Ω2 .
10
3
Therefore, for the combined 30 resistors,
30
X
xi = 892 Ω + 483 Ω = 1375 Ω
i=1
and
30
X
x2i = 39 815.31 Ω2 + 23 361.39 Ω2 = 63 176.7 Ω2 .
i=1
P30
1
1
Hence x̄ = 30
i=1 xi = 30 · 1375 Ω = 45.8 Ω and

!2 
30
30
1 X
1
1 X 2
1
2
2
2
x −
xi  =
63 176.7 Ω − (1375 Ω)
s =
29 i=1 i 30 i=1
29
30
= 5.37 Ω2 ,
so s = 2.32 Ω.
4
Related documents