Download Chapter 19

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
CHAPTER 19 OPERATIONAL AMPLIFIERS
Exercise 108, Page 307
1. A differential amplifier has an open-loop voltage gain of 150 when the input signals are 3.55 V
and 3.40 V. Determine the output voltage of the amplifier.
From equation (1), output voltage, V o = A o (V 2 - V 1 ) = 150(3.55 – 3.40)
= (150)(0.15) = 22.5 V
2. Calculate the differential voltage gain of an op amp that has a common-mode gain of 6.0 and a
CMRR of 80 dB
 differential voltage gain 
CMRR = 20log10 
 dB
 common mod e gain 
i.e.
 diferential voltage gain 
80 = 20 log10 

6.0


from which,
80
 differential voltage gain 
 log10 

20
6.0


80
Hence,
10 20 
differential voltage gain
6.0
and differential voltage gain = 6.0 10  = 6  104
4
3. A differential amplifier has an open-loop voltage gain of 150 and a common input signal of
4.0 V to both terminals. An output signal of 15 mV results. Determine the common-mode gain
and the CMRR.
Common-mode gain, A com
Vo
15  103


= 0.00375 or 3.75  10 3
Vcom
4.0
© John Bird Published by Taylor and Francis
245
 differential voltage gain 
CMRR = 20log10 
 dB
 common mod e gain 
 150 
= 20 log10 
 dB  20 log10 40000 = 92.04 dB
 0.00375 
4. In the inverting amplifier of shown below, R i = 1.5 k and R f = 2.5 k. Determine the output
voltage when the input voltage is: (a) + 0.6 V (b) - 0.9 V
 R f 
From equation (5), V o = 
 Vi
 Ri 
 2500 
(a) When V i = + 0.4 V, V o = 
 (+ 0.6) = - 1.0 V
 1500 
 2500 
(b) When V i = - 1.2 V, V o = 
 (- 0.9) = + 1.5 V
 1500 
5. The op amp shown below has an input bias current of 90 nA at 20C. Calculate (a) the voltage
gain, and (b) the output offset voltage due to the input bias current.
(a) Voltage gain, A = 
Rf
1.2 106

= - 80
Ri
15 103
 15 103 1.2 106 
 Ri Rf 
9

(b) Offset voltage, Vos  IB 
   90 10  
3
6
R

R
15

10

1.2

10
 
 
 i
f 

© John Bird Published by Taylor and Francis
246
 90 10 18 10  = 1.33 mV
=
9
9
1215000
6. Determine (a) the value of the feedback resistor, and (b) the frequency for an inverting amplifier
to have a voltage gain of 45 dB, a closed-loop bandwidth of 10 kHz and an input resistance of
20 k.
(a) Gain in decibels = 20log10  voltagegain 
i.e.
45 = 20 log10 A
and
A = 10 20 = 177.83
Also,
A=
from which,
45
 log10 A
20
45
Rf
Ri
i.e.
177.83 =
Rf
20  103
from which, feedback resistor, R f  177.83  20 103 = 3.56 M
(b) Frequency = gain  bandwidth = 177.83  10  103 = 1.78 MHz
© John Bird Published by Taylor and Francis
247
Exercise 109, Page 313
1. If the input voltage for the op amp shown below is – 0.5 V, determine (a) the voltage gain,
(b) the output voltage.
(a) Voltage gain, A = 1 +
15 103
Rf
=1+
= 1 + 2.206 = 3.206 or 3.21
Ri
6.8 103
 R 
(b) Output voltage, Vo  1  f  Vi  (3.206)(0.5) = - 1.60 V
 Ri 
2. In the circuit shown below, determine the value of the output voltage, Vo , when (a) V1 = + 1 V
and V2 = + 3 V (b) V1 = + 1 V and V2 = - 3 V
V V 
3 
 1
(a) Output voltage, Vo  R f  1  2     25 103  

3
3 
 10 10 10 10 
 R1 R 2 
=   25 103 100 10 6  300 10 6 
=   25 103  400 106  = - 10 V
V V 
3 
 1
(b) Output voltage, Vo  R f  1  2     25 103  

3
3 
 10 10 10 10 
 R1 R 2 
=   25 103 100 10 6  300 10 6 
© John Bird Published by Taylor and Francis
248
=   25  103  200  106  = + 5 V
3. For the summing op amp shown below, determine the output voltage, Vo
V V V 
0.5
0.8 
 0.3
Output voltage, Vo  R f  1  2  3     60 103  


3
3
3 
 15 10 25 10 32 10 
 R1 R 2 R 3 
=   60 103  20 10 6  20 10 6  25 10 6 
=   60 103  65 106  = - 3.9 V
4. A steady voltage of – 1.25 V is applied to an op amp integrator having component values of
R = 125 k and C = 4.0 F. Calculate the value of the output voltage 120 ms after applying the
input, assuming that the initial capacitor charge is zero.
Output voltage, Vo  
1
1
Vi dt  
 1.25 dt

CR
 4.0 106 125 103  
=
1
 1.25  dt  2 1.25 t  = 2.5 t
0.5 
When time t = 120 ms, output voltage, Vo   2.5  120 103  = 0.3 V
5. In the differential amplifier shown below, determine the output voltage, Vo , if: (a) V1 = 4 mV
and V2 = 0 (b) V1 = 0 and V2 = 6 mV (c) V1 = 40 mV and V2 = 30 mV (d) V1 = 25 mV and
V2 = 40 mV
© John Bird Published by Taylor and Francis
249
(a) Output voltage, Vo  
 120 103 
Rf
Vi   
4 103  = - 60 mV
3 
Ri
 8 10 
 R 3  R f
(b) Output voltage, Vo  
1 
 R 2  R3   Ri

 120  120 
3
 V2  
1 
  6 10 
8 
 8  120 

 120 
3
=
 1  15   6 10  = + 90 mV
 128 
 R
(c) V1  V2 hence, output voltage, Vo   V1  V2    f
 Ri

 120 
   40  30   
 mV = - 150 mV
 8 

 R 3  R f 
(d) V2  V1 hence, output voltage, Vo   V2  V1  
1 

R

R
Ri 
3 
 2
 120  120 
=  40  25  
 1 
 = + 225 mV
8 
 128  
© John Bird Published by Taylor and Francis
250
Related documents