Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Sigma Bond Metathesis Reporter: Changliang Sun Supervisor: Zhangjie Shi Outline ¾ Introduction ¾ Mechanism ¾ Examples and Applications ¾ Summary and Outlook ¾ Acknowledgements 2007.10.12 OPSS 2 1 Introduction The Nobel Prize in Chemistry 2005 : “for the development of metathesis method in organic synthesis” Yves Chauvin Robert H. Grubbs Richard R. Schrock A Dance Changing Partners ! 2007.10.12 OPSS 3 Introduction Alkene Metathesis R LnM R R Mes N L nM L nM Cl R' R' R' R' R' R' Cl Alkyne Metathesis R R' LnM LnM R' R' R' R' H Ru PCy3 Ph R R R L nM N Mes MLn R' R' (RO)3W C t-Bu R' Alkane Metathesis LnM R' 2007.10.12 R H L nM R' R H OPSS MLn R R' H ? 4 2 Introduction Natural Gas Methane Liquefied Natural Gas 2007.10.12 OPSS 5 Introduction CH4 2007.10.12 higher alkanes OPSS 6 3 Introduction Chemical conversions of methane Syngas CO , H2 CH4 Steam reforming & partial oxidation Transiton metal activation of C-H bond CH4 + CmH2m superacid OM cat. [Pt] , [Pd] O2 CH3OH , HCOOH Reaction with olefins for higher alkanes Coupling with silanes Cm+1H2(m+1)+2 Alkanes Metathesis CH4 + CnH2n+2 [TM] cat. R-H + H-SiR'3 cat. R-SiR'3 + H2 CmH2m+2 + C(n+1-m)H2(n+1-m)+2 Alkanes' Dehydropolymerization CmH2m+2 + CnH2n+2 2007.10.12 [TM] cat. Cm+nH2(m+n)+2 + H2 Jean-Marie Basset, Angew. Chem. Int. Ed. 2004, 43, 5366 –5369 OPSS 7 Introduction Alkane Metathesis Significant C-C , C-H Metathesis σ Bond Metathesis 2007.10.12 OPSS Unreactive Non-selective Ineffective General Direct Unique 8 4 Outline ¾ Introduction ¾ Mechanism ¾ Examples and Applications ¾ Summary and Outlook ¾ Acknowledgements 2007.10.12 OPSS 9 Mechanism General Define The idea of sigma bond metathesis was developed for the progress of σbond cleavage and formation that catalyzed by alkyl or hydride complexes of ‘early’ transition metals with d0 electronic configurations. Extensive experimental and theoretical studies have led to the concept of the general four-center transition state. M E M E M E' E' H E' H E H M= Sc , Y , Ln ; Ti , Hf , Zr , W , etc. 2007.10.12 OPSS 10 5 Mechanism d0 Metals 1. Electropositive, very easy to lose all their valence electrons---highest permissible oxidation state (d0 configuration complexes). Oxidative addition and reductive elimination are impossible ! Electron-deficient metal center with one or more vacant orbitals would provide a low-energy means of approach for H-H, C-H bond to M-R bond. 2. 2007.10.12 OPSS 11 Mechanism Ligand H Me H H Me R Me Sc H H Cp Me R Zr R' Me Cp* 1. anionic ligands: necessary for d0 metal center 2. η5 ligands: more stable for the complex 3. bulky ligands: able to prevent dimerization or oligomerization able to block approach of the π-orbital from substituted olefins. John E. Bercaw et al., J. Am. Chem. Soc. 1987, 109, 203-219. 2007.10.12 OPSS 12 6 Mechanism R R H R (Cp*2)Sc (Cp*2)Sc H (Cp*2)Sc R' R' R' H Three steps: (i) Approach of the H-H or C-H bond to the vacant orbital of Cp*2ScR’; (ii) Formation of the transition state described above with H occupying the central β position in all cases; (iii) Departure of the new H-H or C-H σbond from the opposite side of the orbital. Steigerwald, M. L.; Goddard, W. A., III. J. Am. Chem. Soc. 1984, 106, 308. John E. Bercaw et al., J. Am. Chem. Soc. 1987, 109, 203-219. 2007.10.12 OPSS 13 Mechanism Agostic Interaction The word “agostic” is derived from the Greek word for “to hold on to oneself”.(元结作用,抓氢作用) It most commonly refers to a C-H bond on a ligand that undergoes an interaction with the metal complex. Three-center, two-electron bridging interaction. This interaction closely resembles the transition state of an oxidative addition or reductive elimination reaction. The bonding could also be described as closely resembling a sigma complex. Me H C Et H B Mo N N N N first example 2007.10.12 P CO CO P Cl Cl Ti Cl C H Co H H α-agostic interaction R3P H H H β-agostic interaction Cotton, F. A.; LaCour, T.; Stanislowski, A. G. J. Am. Chem. Soc.1974, 96, 754-760. OPSS 14 7 Mechanism H2 C Cp* Sc Cp* CH2 H 1. The C-H group acts as an electron donor in an interaction with an electron deficient metal center. 2. One condition for the interaction to be effective is that the hydrogen and the metal can be brought into contact without straining the system too much. 3. Typical agostic metal-hydrogen distances are 1.9-2.4 Å. 4. The determination of agostic bond strengths is often not possible at all and only approximate values are proposed. These difficulties lead to uncertain estimations of those interaction strengths between 1 and 20 kcal.mol-1. Jorg Grunenberg, et al., Organometallics 2006, 25, 118-121. Bjorn O. Roos, et al., J. Phys. Chem. A 2007, 111, 6420-6424. OPSS 15 2007.10.12 Mechanism Transition State 1.86 A Cp2Sc E H 1.97 A H 1.53 A 2.11 A H H Cp2Sc H 0.81 A H 1.92 A Cp2Sc 1.85 A H H 1.02 A H [Cp2ScH] + H2 [Cp2ScH] + H2 Kite-Shaped Transition State 2007.10.12 T. Ziegler, E. Folga, A. Berces, J. Am. Chem. Soc. 1993, 115, 636. OPSS 16 8 Mechanism Selectivity R (Cp*2)Sc H (Cp*2)Sc H R' R R' Thermodynamic control ? Cp*2Sc-C6H5 + H-CH3 (1) Cp*2Sc-H + CH3-C6H5 (2) Cp*2Sc-CH3 + H-C6H5 ∆Hθ =∆Hθ (2)-∆Hθ (1)= 4 kcal.mol-1 Consistent with the observed experimental results, but only slightly selective. Many reactions with other substituents showed a roughly equalΔHθ values. Steigerwald, M. L.; Goddard, W. A., III. J. Am. Chem. Soc. 1984, 106, 308. John E. Bercaw et al., J. Am. Chem. Soc. 1987, 109, 203-219. 2007.10.12 OPSS 17 Mechanism Steric effect control ? A bulky R group, rather than H atom, seems favored atβ position. Even when R=Me, no C-C coupling product (ethane) was found ! Electronic effect control ? Difference of electronegativity between C and H. Much poorer overlap provided by the sp3 C orbital of R in the crucial center β position results in an overriding, unfavorable electronic effect. R (Cp*2)Sc R' 2007.10.12 H H (Cp*2)Sc R Unfavored R' Steigerwald, M. L.; Goddard, W. A., III. J. Am. Chem. Soc. 1984, 106, 308. OPSS 18 9 Outline ¾ Introduction ¾ Mechanism ¾ Examples and Applications ¾ Summary and Outlook ¾ Acknowledgements 2007.10.12 OPSS 19 Examples and Applications 1. IIIB Metals: Sc Y La-Lu Ac-Lr 2. IVB Metals: Ti Zr Hf 3. VB Metals: V Nb Ta 2007.10.12 OPSS 20 10 Examples and Applications 1. IIIB Metals: Sc Y La-Lu Ac-Lr M(η5-Cp*)2CH3 + 13 cyclohexane CH4 o M(η5-Cp*)213CH3 + CH4 70 C M = Lu , Y H3 C + CH4 Lu Lu CH3 - CH4 H C H3 Patricia L. Watson, J. Am. Chem. Soc. 1983, 105, 6491-6493 2007.10.12 OPSS 21 Examples and Applications 1. IIIB Metals: Sc Y La-Lu Ac-Lr -CH4 Cp*2MCH3 M M H 13 13 CH4 Cp*2M13CH3 CH3 Aaron D. Sadow and T. Don Tilley , J. Am. Chem. Soc. 2003, 125, 9462-9475 Carol M. Fendrick and Tobin J. Marks , J. Am. Chem. Soc. 1984, 108, 425-437 2007.10.12 OPSS 22 11 Examples and Applications 1. IIIB Metals: Sc Y La-Lu Ac-Lr CH2C(CH3)3 Th CH2C(CH3)3 H2 C closed container Th cyclohexane , 50oC (H3C)3C H2 C C(CH3)2 + H-CH2C(CH3)3 C H2 H 2*CpTh CH2 H 2C C(CH3)2 Carol M. Fendrick and Tobin J. Marks , J. Am. Chem. Soc. 1984, 106, 2214-2216 2007.10.12 OPSS 23 Examples and Applications 1. IIIB Metals: Sc Y La-Lu Ac-Lr H2 C Th cyclohexane , 30oC C(CH3)2 + Cp* Cp* C(CH3)2 + CH3 H H Th H CH3 H Th H H2 C Th 80±10% yield by NMR C H2 H CH3 H cyclohexane , 30oC C H2 Th Unstable β-C elimination ! 2007.10.12 Carol M. Fendrick and Tobin J. Marks , J. Am. Chem. Soc. 1984, 108, 425-437 OPSS 24 12 Examples and Applications 1. IIIB Metals: Sc Y La-Lu Ac-Lr δ- δ+ R' H LnSc-R' + R-H LnSc-R + R'-H LnSc R δ+ δ- R, R' = H, alkyl, alkenyl, aryl, alkynyl An appropriate model for the transition states of such σ bond metathesis reactions must accommodate the observed order of reactivity of R-H bonds with Cp*2Sc-R' bonds : R = R' = H >> R = H, R' = alkyl >> R-H = sp C-H, R' = alkyl > R-H = sp2 C-H, R' = alkyl > R-H = sp3 C-H, R' = alkyl . John E. Bercaw et al., J. Am. Chem. Soc. 1987, 109, 203-219. OPSS 25 2007.10.12 Examples and Applications 1. IIIB Metals: Sc Y La-Lu Ac-Lr Cp*2ScCH3 + CH2=CMe2 80oC σ-bond metathesis Cp*2ScCH3 CH2=CHMe 25oC olefin insertion Cp*2ScCH2CHMe2 H Cp2*Sc C CMe2 + CH4 CH2=CHMe H Cp2*Sc 80oC, -CH3CHMe2 C CHMe σ-bond metathesis Bulky Cp* ligands block approach of the π-orbitals from substituted olefins ! How about other less sterically encumbered ligands? 2007.10.12 John E. Bercaw et al., J. Am. Chem. Soc. 1987, 109, 203-219. OPSS 26 13 Examples and Applications 1. IIIB Metals: Sc Y La-Lu Ac-Lr R R OpSc-H = [OpSc-H] Sc Me2Si H R R' (n+2) R' [(Cp*SiNR)(PMe3)ScH] X R' (Cp*SiNR)Sc o 25 C ; -PMe3 R' n H2 -[(Cp*SiNR)ScH] R' [(Cp*SiNR)(PMe3)ScH] = Me2Si N R' R' R' n R' H Ziegler-Natta Catalysts Me3C 2007.10.12 R' n PMe3 Sc slow β-H elim. -[(Cp*SiNR)ScH] John E. Bercaw, Pure & Appl. Chem., 1990, 62, 1151-1154. OPSS 27 Examples and Applications 1. IIIB Metals: Sc Y La-Lu Ac-Lr Initial investigation in σbond metathesis Stoichiometric amount of complex, rather than catalystic reaction ! III B group metal complex catalysts: Providing the general models of investigation on theoretical calculation. Unknown Lanthanide series and Actinium series…… 2007.10.12 OPSS 28 14 Examples and Applications 2. IVB Metals: Ti Zr Hf Catalytic dehydrogenative polymerization of silanes by Ti and Zr metallocene derivatives R Cp2MR2 n RSiH3 Si H H (n-1) H2 H + n Significance: A number of applications for polysilanes: photoresists, photoconductors, semiconductors, nonlinear optical meterials. As an investigation ahead for methane (alkanes) dehydropolymerization, which probably shares the same mechanism. 2007.10.12 Hee-Gweon Woo and T. Don Tilley, J. Am. Chem. Soc. 1989, 111, 3757-3158 OPSS 29 Examples and Applications 2. IVB Metals: Ti Zr Hf Cl Cp*CpZr Si(SiMe3)3 + PhSiH3 Failed to isolate ! Cl Cp*CpHf Si(SiMe3)3 2007.10.12 Cl hν + HSi(SiMe3)3 Cp*CpZr benzene-d6 SiH2Ph (-SiHPh-)n + [CpCp*ZrHCl] heat or hν + PhSiH3 Cl + HSi(SiMe3)3 Cp*CpHf benzene-d6 M Si Si H SiH2Ph Hee-Gweon Woo and T. Don Tilley, J. Am. Chem. Soc. 1989, 111, 3757-3158 OPSS 30 15 Examples and Applications n RSiH3 H Si H Hydrolysis M R Cp2MR2 2. IVB Metals: Ti Zr Hf H + (n-1) H2 n Si Si H + H M H M H + H Si Si M H' + H Si H M Si' + H Si Si M Si + H Si H Hydrogen exchange M H + H' H' Si M H Silane exchange M Si + Si' H Si' M Si Si-Si bond cleavage/formation M H + Si Si Si M H 2007.10.12 Hee-Gweon Woo and T. Don Tilley, J. Am. Chem. Soc. 1992, 114, 7047-1055 Hee-Gweon Woo and T. Don Tilley, J. Am. Chem. Soc. 1989, 111, 8043-8044 OPSS 31 Examples and Applications 2. IVB Metals: Ti Zr Hf Hydrolysis Cl H2 Cp*CpM H H Cp*CpClM Si (SiMe3)3 Si(SiMe3)3 - HSi(SiMe3)3 Cl Cp*CpM H M = Zr, Hf H2 should be excess absolutely ! Reverse Cl Cp*CpHf H PhSiH3 H H Cp*CpClHf H Si H Ph - H2 Cl Cp*CpHf SiH2Ph Silanes should be excess absolutely ! 2007.10.12 Hee-Gweon Woo and T. Don Tilley, J. Am. Chem. Soc. 1992, 114, 7047-1055 Hee-Gweon Woo and T. Don Tilley, J. Am. Chem. Soc. 1989, 111, 8043-8044 OPSS 32 16 Examples and Applications 2. IVB Metals: Ti Zr Hf Silane exchange H RR'SiH2 Cl R' - HSi(SiMe3)3 H Cp*CpClHf Cp*CpHf A R Si Cl Cp*CpHf Si (SiMe3)3 Si(SiMe3)3 SiHRR' Occur when the starting complex possesses a bulky, easily displaced silyl group ! A : A good starting material !!! 2007.10.12 Hee-Gweon Woo and T. Don Tilley, J. Am. Chem. Soc. 1992, 114, 7047-1055 Hee-Gweon Woo and T. Don Tilley, J. Am. Chem. Soc. 1989, 111, 8043-8044 OPSS 33 Examples and Applications 2. IVB Metals: Ti Zr Hf Si-Si bond cleavage/formation Cl PhSiH3 Cp*CpHf A SiPhH2 H SiPhH2 Cp*CpClHf H Si H Ph Cl + Cp*CpHf B PhH2SiSiPhH2 H A or B (SiHPh)n PhSiH3 SiPhH3 should be excess absolutely ! B is a crucial complex in this process ! 2007.10.12 Hee-Gweon Woo and T. Don Tilley, J. Am. Chem. Soc. 1992, 114, 7047-1055 Hee-Gweon Woo and T. Don Tilley, J. Am. Chem. Soc. 1989, 111, 8043-8044 OPSS 34 17 Examples and Applications 2. IVB Metals: Ti Zr Hf Dehydropolymerization Catalytic Mechanism H(SiHR)m(SiHR)nH MH H(SiHR)nH R H M H R Si(SiRH)n-1H Si(SiRH)n-1H H M Si(SiRH)m-1H H R Si-Si bond formation H(SiHR)mH 2007.10.12 H H dehydrogenation M(SiHR)nH H2 Hee-Gweon Woo and T. Don Tilley, J. Am. Chem. Soc. 1992, 114, 7047-1055 Hee-Gweon Woo and T. Don Tilley, J. Am. Chem. Soc. 1989, 111, 8043-8044 OPSS 35 Examples and Applications 2. IVB Metals: Ti Zr Hf Notes: 1. This polymerization involves step growth of polymer rather than chain growth. So the relatively low molecular weights are produced, and high monomer concentration and high vacuum to remove hydrogen can increased MW. 2. It is well-known that Si has an lower electronegativity to H and can form stable compounds with expanded 3d coordination spheres. So the Si atom can occupy the β position in transition state. But C atom seems very difficult ! Electronegativity: 2007.10.12 Si: 1.9 H: 2.2 C: 2.5 Hee-Gweon Woo and T. Don Tilley, J. Am. Chem. Soc. 1992, 114, 7047-1055 Hee-Gweon Woo and T. Don Tilley, J. Am. Chem. Soc. 1989, 111, 8043-8044 OPSS 36 18 Examples and Applications 3. VB Metals: V Nb Ta The silica-supported transition metal hydrides: Si-O Si Si-O Ta H 2 CnH2n+2 Cn+iH2(n+i)+2 + Cn-iH2(n-i)+2 with i = 1, 2, ......n-1 , but where i = 1 is generally favored. Successful metathesis of alkanes ! 2007.10.12 V. Vidal, A. Theolier, J. Thivolle-Cazat, J.-M. Basset, Science 1997, 276, 99 OPSS 37 Examples and Applications 3. VB Metals: V Nb Ta 2007.10.12 V. Vidal, A. Theolier, J. Thivolle-Cazat, J.-M. Basset, Science 1997, 276, 99 OPSS 38 19 Examples and Applications 3. VB Metals: V Nb Ta [Ta]S H CH3 CH3 H2 [Ta]S CH2CH3 CH4 CH3 CH2 H CH3 CH3 CH3 [Ta]S CH3 CH3 [Ta]S CHCH3 [Ta]S CH3 CH3 CH3 CH3 CH2CH3 V. Vidal, A. Theolier, J. Thivolle-Cazat, J.-M. Basset, Science 1997, 276, 99 OPSS 39 2007.10.12 Examples and Applications 3. VB Metals: V Nb Ta cat. 2 C 2H 6 CH4 150oC + C3 H8 ΔGθ = - 8.2 kJ·mol-1 .(at 150°C driven by the formation of methane) Reverse direction : H2 C3H8 + CH4 C3H8 CH4 1 /2 C2H6 + C 3H 8 + + cat. 2 C 2H 6 C2H6 1 /2 C4H10 methane/propane = 1250:1 Jean-Marie Basset, Angew. Chem. Int. Ed. 2004, 43, 5366 –5369 2007.10.12 OPSS 40 20 Examples and Applications 3. VB Metals: V Nb Ta [( Si O )xTa( CHCMe3 )(CH2CMe3)(3-x)] x=1, or 2 CH3 R' CH3 R' Ta Ta R R H CH2R' H CH2R' R R Ta Ta CH3 R' Ta R C-C bond activation H CH2R' R Ta C-H bond activation(alkane exchange) Jean Thivolle-Cazat, Jean-Marie Basset, Angew. Chem. Int. Ed. 2001, 40, 2331-2334 2007.10.12 OPSS 41 Examples and Applications 3. VB Metals: V Nb Ta Ta C-C bond activation C-H bond activation C1 C Ta H Ta > C2 C2 Ta > C1 larger than C2 C1 reverse C-H bond activation H C Ta >> not abserved Jean Thivolle-Cazat, Jean-Marie Basset, Angew. Chem. Int. Ed. 2001, 40, 2331-2334 2007.10.12 OPSS 42 21 Examples and Applications 3. VB Metals: V Nb Ta Notes: Silica-supported catalysts have special properties and have already been used in industrial applications. Selectivity needs more improvement. Still difficult for formation of higher alkanes. Jean Thivolle-Cazat, Jean-Marie Basset, Angew. Chem. Int. Ed. 2001, 40, 2331-2334 2007.10.12 OPSS 43 Outline ¾ Introduction ¾ Mechanism ¾ Examples and Applications ¾ Summary and Outlook ¾ Acknowledgements 2007.10.12 OPSS 44 22 Summary and Outlook Sigma bond metathesis is a kind of mechanism applied in the progress of σbond cleavage and formation that catalyzed by alkyl or hydride complexes of ‘early’ transition metals with d0 electronic configurations. Initial investigation Stoichiometric reaction Dehydropolymerization of Silanes Silica-supported alkane metathesis Where is the future of sigma bond metathesis ? 2007.10.12 OPSS 45 Summary and Outlook H3C (CH2)n CH3 + H3C (CH2)n+m-x + PR2 O PR2 X H3C (CH2)n CH3 CH3 O H3C (CH2)x CH3 Ir(L) 1: R= t-Bu, X=H L= C2H4, H2 PR2 2MH2 2M 2 R olefin metathesis R 2 X Ir(L) PR2 2MH2 R + H2C R CH2 2M R R + H3C CH3 2a: R=t-Bu, X=H 2b: R=i-Pr, X=OMe L= H2 and/or H4 i i -Pr -Pr N (H3C)(F3C)CO A new idea for alkane metathesis ! 2007.10.12 Mo CHC(CH3)2Ph (H3C)(F3C)CO 3 A. S. Goldman, et al, Science 2006, 312, 257 – 261. OPSS 46 23 Summary and Outlook 2007.10.12 A. S. Goldman, et al, Science 2006, 312, 257 – 261. OPSS 47 Summary and Outlook This system involves a single metal with dual properties in contrast to the Goldman–Brookhart system ! i-Pr i-Pr N t-Bu t-Bu Mo O O Si O O O O Si O There are also new methods to afford alkane metathesis, and sigma bond metathesis is just a kind of them ! C. Copret,* J. T.Cazat, and J.M. Basset, Angew. Chem. Int. Ed. 2006, 45, 6201 –6203 2007.10.12 OPSS 48 24 Summary and Outlook “This represents a great step forward for ‘green chemistry,’ reducing potentially hazardous waste through smarter production. Metathesis is an example of how important basic science has been applied for the benefit of man, society and the environment,” ------ the committee’s comment on 2005 Nobel Prize in Chemistry . Next Nobel Prize in Organic Chemistry ? 2007.10.12 OPSS 49 Outline ¾ Introduction ¾ Mechanism ¾ Examples and Applications ¾ Summary and Outlook ¾ Acknowledgements 2007.10.12 OPSS 50 25 Acknowledgements PKU, CCME, OPSS Prof. Zhangjie Shi All members in my group All professors and students here 2007.10.12 OPSS 51 26