Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Measures of Position MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Spring 2014 J. Robert Buchanan Measures of Position Introduction A measure of position gives you some idea of 1 where particular data values would rank in an ordering of a data set, or 2 where a data value falls with respect to the mean of the sample or population. J. Robert Buchanan Measures of Position z-Scores Definition The z-score represents the distance that a data value is from the mean in terms of standard deviations. Population z-score: z = Sample z-score: z = x −µ σ x −x s The z-score has no units. It has a mean of 0 and a standard deviation of 1. J. Robert Buchanan Measures of Position Example Consider the data 16 21 22 23 24 25 25 27 28 29 17 21 22 23 24 25 25 27 28 30 17 21 22 23 24 25 25 27 28 30 17 21 22 23 24 25 26 27 28 30 18 21 22 23 24 25 26 27 28 30 19 21 22 23 24 25 26 27 29 30 19 21 22 23 24 25 26 27 29 30 20 21 22 23 24 25 26 27 29 30 20 21 22 23 24 25 26 27 29 30 20 21 22 23 24 25 26 27 29 31 20 22 22 23 24 25 26 27 29 31 We can calculate µ = 24.7 and σ = 3.4. J. Robert Buchanan Measures of Position 20 22 22 23 24 25 26 28 29 32 21 22 22 23 24 25 26 28 29 32 21 22 22 23 24 25 26 28 29 32 21 22 22 23 24 25 26 28 29 33 Example Consider the data 16 21 22 23 24 25 25 27 28 29 17 21 22 23 24 25 25 27 28 30 17 21 22 23 24 25 25 27 28 30 17 21 22 23 24 25 26 27 28 30 18 21 22 23 24 25 26 27 28 30 19 21 22 23 24 25 26 27 29 30 19 21 22 23 24 25 26 27 29 30 20 21 22 23 24 25 26 27 29 30 20 21 22 23 24 25 26 27 29 30 20 21 22 23 24 25 26 27 29 31 20 22 22 23 24 25 26 27 29 31 20 22 22 23 24 25 26 28 29 32 21 22 22 23 24 25 26 28 29 32 21 22 22 23 24 25 26 28 29 32 We can calculate µ = 24.7 and σ = 3.4. Thus the z-score corresponding to a data value of 27 is z= 27 − 24.7 = 0.68. 3.4 J. Robert Buchanan Measures of Position 21 22 22 23 24 25 26 28 29 33 Example If µ = 24.7 and σ = 3.4, find the z-scores corresponding to 1 x = 17 2 x = 22 3 x = 30 J. Robert Buchanan Measures of Position Example If µ = 24.7 and σ = 3.4, find the z-scores corresponding to 1 x = 17 z= 2 x = 22 3 x = 30 17 − 24.7 −7.7 = = −2.26 3.4 3.4 J. Robert Buchanan Measures of Position Example If µ = 24.7 and σ = 3.4, find the z-scores corresponding to 1 2 3 x = 17 z= 17 − 24.7 −7.7 = = −2.26 3.4 3.4 z= 22 − 24.7 −2.7 = = −0.79 3.4 3.4 x = 22 x = 30 J. Robert Buchanan Measures of Position Example If µ = 24.7 and σ = 3.4, find the z-scores corresponding to 1 2 3 x = 17 z= 17 − 24.7 −7.7 = = −2.26 3.4 3.4 z= 22 − 24.7 −2.7 = = −0.79 3.4 3.4 x = 22 x = 30 z= 30 − 24.7 5.3 = = 1.56 3.4 3.4 J. Robert Buchanan Measures of Position Example If µ = 24.7 and σ = 3.4, find the data values corresponding to z-scores of 1 z = −2.0 2 z = 1.51 3 z = 2.575 J. Robert Buchanan Measures of Position Example If µ = 24.7 and σ = 3.4, find the data values corresponding to z-scores of 1 z = −2.0 x − 24.7 3.4 (−2.0)(3.4) + 24.7 = x −2.0 = x 2 z = 1.51 3 z = 2.575 J. Robert Buchanan = 17.9 Measures of Position Example If µ = 24.7 and σ = 3.4, find the data values corresponding to z-scores of 1 z = −2.0 x − 24.7 3.4 (−2.0)(3.4) + 24.7 = x −2.0 = x 2 = 17.9 z = 1.51 x − 24.7 3.4 = 29.8 1.51 = x 3 z = 2.575 J. Robert Buchanan Measures of Position Example If µ = 24.7 and σ = 3.4, find the data values corresponding to z-scores of 1 z = −2.0 x − 24.7 3.4 (−2.0)(3.4) + 24.7 = x −2.0 = x 2 = 17.9 z = 1.51 x − 24.7 3.4 = 29.8 1.51 = x 3 z = 2.575 J. Robert Buchanan Measures of Position Percentiles Definition The k th percentile, denoted Pk , of a set of data divides the lower k % of a data set from the upper (100 − k )%. There are 99 percentiles. J. Robert Buchanan Measures of Position Percentiles Definition The k th percentile, denoted Pk , of a set of data divides the lower k % of a data set from the upper (100 − k )%. There are 99 percentiles. Interpretation: The data value at the 40th percentile separates the lower 40% of the data from the upper 60% of the data. J. Robert Buchanan Measures of Position Determining the k th Percentile 1 Arrange the data in ascending order. 2 Compute an index i using the formula: k i= (n + 1) 100 where k is the percentile and n is the number of observations in the data set. 3 If i is a whole number, the k th percentile is the ith data value. If i is not a whole number, the k th percentile is the mean of the observations on either side of i. J. Robert Buchanan Measures of Position Example Consider the data: 16 21 22 23 24 25 25 27 28 29 17 21 22 23 24 25 25 27 28 30 17 21 22 23 24 25 25 27 28 30 17 21 22 23 24 25 26 27 28 30 18 21 22 23 24 25 26 27 28 30 19 21 22 23 24 25 26 27 29 30 19 21 22 23 24 25 26 27 29 30 20 21 22 23 24 25 26 27 29 30 20 21 22 23 24 25 26 27 29 30 20 21 22 23 24 25 26 27 29 31 20 22 22 23 24 25 26 27 29 31 Find P23 , P45 , P75 , and P90 . J. Robert Buchanan Measures of Position 20 22 22 23 24 25 26 28 29 32 21 22 22 23 24 25 26 28 29 32 21 22 22 23 24 25 26 28 29 32 21 22 22 23 24 25 26 28 29 33 Solution To find P23 : 23 Index, i = (150 + 1) = 34.73 (not a whole number) 100 The 34th and 35th values of the variable are respectively, 22 and 22. The mean of 22 and 22 is 22, thus P23 = 22. J. Robert Buchanan Measures of Position Solution To find P23 : 23 Index, i = (150 + 1) = 34.73 (not a whole number) 100 The 34th and 35th values of the variable are respectively, 22 and 22. The mean of 22 and 22 is 22, thus P23 = 22. To find P75 : Index, i = 75 100 (150 + 1) = 113.25 (not a whole number) The 113th and 114th values of the variable are respectively, 27 and 27. The mean of 27 and 27 is 27, thus P75 = 27. J. Robert Buchanan Measures of Position Finding the Percentile of a Given Data Value 1 Arrange the data in ascending order. 2 Use the following formula: Percentile of x = number of data values less than x × 100 n Round to the nearest whole number. J. Robert Buchanan Measures of Position Example Consider the data: 16 21 22 23 24 25 25 27 28 29 17 21 22 23 24 25 25 27 28 30 17 21 22 23 24 25 25 27 28 30 17 21 22 23 24 25 26 27 28 30 18 21 22 23 24 25 26 27 28 30 19 21 22 23 24 25 26 27 29 30 19 21 22 23 24 25 26 27 29 30 20 21 22 23 24 25 26 27 29 30 20 21 22 23 24 25 26 27 29 30 20 21 22 23 24 25 26 27 29 31 20 22 22 23 24 25 26 27 29 31 20 22 22 23 24 25 26 28 29 32 Find the percentile scores of 24, 25, 29, and 30. J. Robert Buchanan Measures of Position 21 22 22 23 24 25 26 28 29 32 21 22 22 23 24 25 26 28 29 32 21 22 22 23 24 25 26 28 29 33 Solution Percentile of 24: In other words, P40 60 × 100 = 40 150 = 24. J. Robert Buchanan Measures of Position Solution Percentile of 24: In other words, P40 60 × 100 = 40 150 = 24. Percentile of 30: 136 × 100 = 90.7 ≈ 91 150 In other words, P91 = 30. J. Robert Buchanan Measures of Position Quartiles Quartiles divide data sets into fourths. Q1 = P25 Q2 = P50 = M = x̃ Q3 = P75 J. Robert Buchanan Measures of Position Example Consider the data: 16 21 22 23 24 25 25 27 28 29 17 21 22 23 24 25 25 27 28 30 17 21 22 23 24 25 25 27 28 30 17 21 22 23 24 25 26 27 28 30 18 21 22 23 24 25 26 27 28 30 19 21 22 23 24 25 26 27 29 30 19 21 22 23 24 25 26 27 29 30 20 21 22 23 24 25 26 27 29 30 20 21 22 23 24 25 26 27 29 30 20 21 22 23 24 25 26 27 29 31 20 22 22 23 24 25 26 27 29 31 Find Q1 , Q2 , and Q3 . J. Robert Buchanan Measures of Position 20 22 22 23 24 25 26 28 29 32 21 22 22 23 24 25 26 28 29 32 21 22 22 23 24 25 26 28 29 32 21 22 22 23 24 25 26 28 29 33 Solution i = 25 100 (150 + 1) = 37.75 22 + 22 Q1 = P25 = = 22 2 50 (150 + 1) = 75.5 i = 100 24 + 25 Q2 = P50 = = 24.5 2 75 i = (150 + 1) = 113.25 100 27 + 27 Q3 = P75 = = 27 2 J. Robert Buchanan Measures of Position Outliers Extreme data values are called outliers. We may check for them using the following procedure. 1 Determine Q1 and Q3 . 2 Compute the interquartile range: IQR = Q3 − Q1 3 Determine the fences: lower fence = Q1 − 1.5(IQR) upper fence = Q3 + 1.5(IQR) 4 An outlier is a data value smaller than the lower fence or larger than the upper fence. J. Robert Buchanan Measures of Position Example Determine if there are any outliers in the following data set. 3.02 4.90 7.90 9.11 11.33 3.79 5.50 7.92 9.29 11.56 3.91 7.00 8.05 9.60 11.72 3.99 7.11 8.37 9.81 11.72 4.60 7.31 8.50 10.30 11.80 4.71 7.45 8.50 10.72 11.97 Hint: Q1 = 7.16 and Q3 = 11.72. J. Robert Buchanan Measures of Position 4.80 7.66 8.79 10.74 12.57 4.85 7.85 9.10 10.89 12.89 Solution 1 Q1 = 7.16 and Q3 = 11.72. 2 Interquartile range: IQR = 11.72 − 7.16 = 4.56. 3 Fences: lower fence = 7.16 − (1.5)(4.56) = 0.32 upper fence = 11.32 + (1.5)(4.56) = 18.16 4 There are no outliers in the data set. J. Robert Buchanan Measures of Position