Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
• • • • • • 1- Introduction, overview 2- Hamiltonian of a diatomic molecule 3- Molecular symmetries; Hund’s cases 4- Molecular spectroscopy 5- Photoassociation of cold atoms 6- Ultracold (elastic) collisions Olivier Dulieu Predoc’ school, Les Houches,september 2004 How to create ultracold molecules using laser cooling? Laser cooling of atoms: closed level-scheme Laser cooling of molecules: NO closed level-scheme One proposal • Based on the development of a Multiple Single Frequency Laser • Sequential cooling on electronic transitions: R,T,V • Simulation on Cs2 B1PuX, with chirped frequencies One proposal • Based on the development of a Multiple Single Frequency Laser • Sequential cooling on electronic transitions: R,T,V • Simulation on Cs2 B1PuX, with chirped frequencies One proposal • Based on the development of a Multiple Single Frequency Laser • Sequential cooling on electronic transitions: R,T,V • Simulation on Cs2 B1PuX, with chirped frequencies One exception? • Direct laser cooling of BeH, CaH, at Los Alamos • Alkaline-earth hydrides have Rydberg transitions similar to the D1, D2 lines in alkali atoms (good spectral isolation), with almost diagonal FC factors matrix (99%) • BeH: theoretical benchmark for open-shell molecules • CaH/CaD: degenerate quantum gases One Solution: cold atom photoassociation First discussion Ultracold molecule!! First steps First observations Ultracold molecule!! First reviews PA well-known at thermal energies: diffuse bands A A A2* From Stwalley&Wang, J. Mol. Spectrosc. 195, 194 (1999) PA at ultracold energies A(ns) A(ns) h L A2* ((ns np j ; v, J )) Ultracold Excited Short-lived molecules Energy balance EPA (v, J ) 2 E g h L E EDoppler Erecoil detuning A L h L Eb (v, J ) E EDoppler Erecoil 200 cm-1 @300K 10-4 cm-1 @100mK Free-bound transition = quasibound-bound transition Stwalley&Wang, J. Mol. Spectrosc. 195, 194 (1999) PAS of cold Cs Trap loss REMPI Detection of PA Ex: Cs REMPI TRAP LOSS Ultracold molecules Ex:Na 11 years of PA observations (1993-2004) • • • • • • • • • • • • • • • Li2: Hulet (Rice,US), Zimmerman (Tübingen, D) Na2: Lett (NIST, US), VanderStraten (Utrecht, NL) K2: Gould, Stwalley (Storrs, US) Rb2: Heinzen (Austin, US), Gabbanini (Pisa, I) Cs2: Pillet (Orsay, F), Stwalley (Storrs, US) H2: Walraven (Amsterdam, NL) He2: Leduc, Cohen-Tannoudji (Paris, F) Ca2: Tiemann, Riehle (Hannover/Braunschweig, D) Yb2: (Tokyo, JP) RbCs: DeMille (Yale, US) KRb: Marcassa, Bagnato (São Carlos, BR), Stwalley (Storrs, US) NaCs: Bigelow (Rochester, US) Sr2: (Boulder, US) In progress: LiCs (Freiburg, D)…. Also: PA in condensates PA: Probe of the long-range part of molecular potentials Long-range interactions between neutral atoms Multipolar expansion (in 1/R) of electrostatic interaction: d .d 3(d1.n )( d 2 .n ) Vd d ( R) 1 2 R3 Stwalley&Wang, J. Mol. Spectrosc. 195, 194 (1999) Le Roy-Bernstein approach LeRoy&Bernstein, J. Chem.Phys. 52, 3869 (1970) How to make the link between observed transitions and long-range behavior of the potential? 2m 1 v 2 R2 ( v ) R1 ( v ) dREv V ( R) h2n Ev D K n n 2 (2m) Cn n 6 : Ev vD v 1/ 2 1 n2 vD v 2n n2 Cn V ( R) D n R (n 2)(1 1 n) K n 2(1 2 1 n) (fractional) vibrational quantum number at the dissociation limit 3 n 3 : Ev vD v 6 -No solution for n=2 -Limited to a single potential -Rotation ( 1/R2) not included Accumulated phase method: Numerical approach for higher flexibility Moerdjik et al, PRA 51, 4852 (1995) Almost constant phase F(R0) at this point R0 for all upper lying vibrational levels If: -A single level is known -The asymptotic potential is known Inward integration of the Schrödinger equation down to R0, with limit condition on the logarithmic derivative of F(R0) Fitting strategy: F( R0 ) F 0 F E ( D E ) F J J ( J 1) ... Parameters: F( R0 ), D, Cn Scattering length Crubellier etal, Eur. Phys. J. D, 6, 211 (1999) Pure long-range molecules (1) Pure long-range molecules (2) 0g (ns np3/ 2 ) R-3 R-3R-6, R-8 Quantum chemistry Spies, 1989 R-3R-6, R-8+exchange 0g (6s 6 p3 / 2 ) The 0g- pure long-range state (1) V P ( R) PP ( R) P ( R) V P ( R) V ( R) The 0g- pure long-range state (2) Hund’s case (a) representation A 2 A 2 V ( R) PP (X R) P (X R) V ( R ) V ( R ) P X P C3P C6P C8P P V ( R) 3 6 8 ... Vexch ( R) R R R P At large distances: -Atomic spin-orbit A 2 fs 3 -Asymptotic expansion of V C3 C6 C8 V ( R) 2 3 6 8 ... Vexch ( R) R R R The 0g- pure long-range state (3) Diagonalization of the spin-orbit matrix Hund’s case (c) representation Attractive potential 1/R3 A 2 A 2 A 2 0 A 2 fs 3 A 1 P 2 2 P V ( R) V ( R) V ( R) V ( R) 3 3 V 2 3 2 2 P 1 P V ( R) V ( R) A V ( R) V ( R) 3 3 3 interaction 1/R3 Flat potential 1/R6 The 0g- pure long-range state (4) C C C3 1 2 8C32 V (0 [ s p3 / 2 ]) E ([ s p3 / 2 ]) 3 ( R) 6 ( R) 66 , 88 ,... R R R 2 R g R : ( R) 3 A C3 ( R) 3 2 R 3A 2 2 C 4 C 3 V (0 g [ s p3 / 2 ]) E ([ s p3 / 2 ]) 33 R 3 AR 6 attractive Potential well when ( R) 0 V (0 g [ s p3 / 2 ]) E ([ s p3 / 2 ]) ( 2 1) C3 R3 repulsive PAS of the 0g- pure long-range state in Cs2 (1) • PAS spectrum: 75 vibrational levels, J=2 • Direct Potential Fit approach: Amiot et al, PRA 66, 052506(2002) V P ( R) PP ( R) P ( R) rel (C3 ; R) V ( R ) ( C ; R ) V ( R ) rel 3 P /P /P /P • 9 Fitting parameters C3 , C6 , C8 , PP ( R), P ( R), rel ( R), Vexch ( R) • minimization 1 N M ycalc (i ) yobs (i ) u (i ) i 1 N 2 1/ 2 PAS of the 0g- pure long-range state in Cs2 (2) asymptotic RKR Quantum chemistry Atomic radiative lifetime from PAS Amiot et al, PRA 66, 052506(2002) Non-relativistic 3 6s r 6 p C C 2 3 P 3 2 3 4 6 p 6 s 2 3 • • Cold molecule formation processes Main requirement: stabilization of the excited population in a bound state Solution: « R »-transfer of the probability density « not efficient » case Observed in: Na2, K2, KRb, NaCs Double-well case Observed in: Cs2, Rb2 Resonant coupling Observed in: Cs2, RbCs,KRb Double-well process in Cs2 REMPI PA SE PA and cold molecule formation in Cs2 REMPI spectra Varying the REMPI laser frequency Dion et al, EPJD 18, 365 (2002) Varying the PA laser frequency Predicted vibrational population in the lowest 3 + state, after decay of 0 - PA levels in Cs u g 2 Vibrational level Of the a3u+ state Detuning of the 0g- PA level Resonant coupling process (1) C. M. Dion et al, PRL 86, 2253 (2001) Resonant coupling process (2) Resonant coupling process (3) Next resonance PA rates, shifts, line shapes: references (non exhaustive) • • • • • • • • • • • • • • Thorsheim et al, PRL 58, 2420 (1987) Napolitano et al, PRA 73, 1352 (1994) Julienne, J. Research NIST 101, 487 (1996) Pillet et al, JPB 30, 2801 (1997) Côté & Dalgarno, PRA 58, 498 (1998) Javanainen & Mackie, PRA 58, R789 (1998) Bohn& Julienne, PRA 60, 414 (1999) Mackie & Javanainen, PRA 60, 3174 (1999) Jones et al, PRA 61, 012501 (1999) Drag et al, IEEE J. Quantum Electronics 36, 1378 (2001) Montalvão & Napolitano, PRA 64, 011403(R) (2001) C. M. Dion et al, PRL 86, 2253 (2001) Dion et al, EPJD 18, 365 (2002) Simoni et al, PRA 66, 063406 (2002) A short tutorial on Feshbach resonances • Resonance: a bound state embedded in a continuum • Shape resonance, Feshbach resonance Collision in channel i with a resonance Tuning the scattering length Moerdjik et al,PRA 51, 4852 (1995) Bibliography • • • • « Interactions in ultracold gases: from atoms to molecules », ed. by M. Weidemüller and C. Zimmermann, Wiley VCH (2003); nice collection of tutorials and research papers from a workshop and training school held in Heidelberg in 2002, in the framework of the EU Network « Cold Molecules » J.T. Bahns, P.L. Gould, W.C. Stwalley, Adv. At. Mol. Opt. Physics 42, 171 (2000) F. Masnou-Seeuws, P. Pillet, Adv. At. Mol. Opt. Physics 47, 53 (2001) O. Dulieu, F. Masnou-Seeuws, JOSA B, (2003)