Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
A talk given at the National Center for Theoretical Sciences (Hsinchu, Taiwan; July 20, 2011) and Shanghai Jiaotong University (Nov. 4, 2011) Some sophisticated congruences involving Fibonacci numbers Zhi-Wei Sun Nanjing University Nanjing 210093, P. R. China [email protected] http://math.nju.edu.cn/∼zwsun Nov. 4, 2011 Abstract The well-known Fibonacci numbers play important roles in many areas of mathematics and they have very nice number-theoretic properties. We will focus on some sophisticated congruences on Fibonacci numbers including the recent determination of Fp−( p ) 5 modulo p 3 , where p is an odd prime. We will also mention some conjectures related to 5-adic valuations for further research. 2 / 42 Part A. On Fibonacci quotients and Wall-Sun-Sun primes 3 / 42 Fibonacci numbers and Lucas numbers The Fibonacci sequence {Fn }n>0 is defined by F0 = 0, F1 = 1, Fn+1 = Fn + Fn−1 (n = 1, 2, 3, . . .). Thus F0 = 0, F1 = F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8, F7 = 13, F8 = 21, F9 = 34, F10 = 55, F11 = 89, F12 = 144. The Lucas numbers L0 , L1 , L2 , . . . are given by L0 = 2, L1 = 1, Ln+1 = Ln + Ln−1 (n = 1, 2, 3, . . .). Relations between Fibonacci numbers and Lucas numbers: Ln = Fn−1 + Fn+1 and 5Fn = Ln−1 + Ln+1 . 4 / 42 More known results on Fibonacci numbers An explicit expression. b(n−1)/2c Fn = X k=0 n−1−k . k Y. Bugeaud, M. Mignotte and S. Siksek [Ann. of Math. 163(2006)]: The only powers in the Fibonacci sequence are F0 = 0, F1 = F2 = 1, F6 = 23 , and F12 = 122 . Ke-Jian Wu and Z. W. Sun [Math. Comp. 78(2009)]: Let a =312073868852745021881735221320236651673651 93670823768234185354856354918873864275 and M =368128524439220711844024989130760705031462 29820861211558347078871354783744850778. Then, for any x ≡ a (mod M), the number x 2 cannot be written in the form Fn /2 ± p m with p a prime and m, n ∈ N = {0, 1, . . .}. 5 / 42 Lucas sequences Let N = {0, 1, 2, . . .} and Z+ = {1, 2, 3, . . .}. Fix A, B ∈ Z. The Lucas sequence un = un (A, B) (n ∈ N) and its companion vn = vn (A, B) (n ∈ N) are defined as follows: u0 = 0, u1 = 1, and un+1 = Aun − Bun−1 (n = 1, 2, 3, . . .); v0 = 2, v1 = A, and vn+1 = Avn − Bvn−1 (n = 1, 2, 3, . . .). Example : Fn = un (1, −1), Ln = vn (1, −1); un (2, 1) = n, vn (2, 1) = 2. Universal Formulae: Let ∆ = A2 − 4B, and let √ √ A+ ∆ A− ∆ α= and β = 2 2 2 be the two roots of the equation x − Ax + B = 0. Then ( n n α −β X if ∆ 6= 0, k n−1−k α−β un = α β = n(A/2)n−1 if ∆ = 0. 06k<n And vn = α n + β n . 6 / 42 Basic properties of Lucas sequences As (αn − β n )(β n + β n ) = α2n − β 2n , we have u2n = un vn . Note also that vn2 − ∆un2 =(αn + β n )2 − ((α − β)un )2 =(αn + β n )2 − (αn − β n )2 = 4(αβ)n = 4B n . Lucas’ Theorem. Let A, B ∈ Z with (A, B) = 1. Then (um , un ) = |u(m,n) |. In particular, m | n ⇒ um | un . Example. F2n = Fn Ln , L2n − 5Fn2 = 4(−1)n , (Fm , Fn ) = F(m,n) . 7 / 42 Legendre symbols Let p be an odd prime given by if p 0 a = 1 if p p −1 if p and a ∈ Z. The Legendre symbol ( pa ) is | a, - a and x 2 ≡ a (mod p) for some x ∈ Z, - a and x 2 ≡ a (mod p) for no x ∈ Z. a b It is well known that ( ab p ) = ( p )( p ) for any a, b ∈ Z. Also, ( 1 if p ≡ 1 (mod 4), −1 = (−1)(p−1)/2 = p −1 if p ≡ −1 (mod 4); ( 1 if p ≡ ±1 (mod 8), 2 (p 2 −1)/8 = (−1) = p −1 if p ≡ ±3 (mod 8); ( 1 if p ≡ ±1 (mod 5), p 5 = = p 5 −1 if p ≡ ±2 (mod 5). 8 / 42 Congruence properties of Lucas sequences Let p be an odd prime. Then ∆ up ≡ (mod p) and vp ≡ A (mod p). p In fact, vp = αp + β p ≡ (α + β)p = Ap ≡ A (mod p); also ∆up = (α − β)(αp − β p ) ≡ (α − β)p+1 = ∆(p+1)/2 (mod p) 2 and hence up ≡ ( ∆ p ) (mod p) if p - ∆. When ∆ = A − 4B ≡ 0 (mod p), we have p−1 A2 A ∆ up ≡ up A, =p ≡ (mod p). 4 2 p 9 / 42 Congruence properties of Lucas sequences Theorem. If p is an odd prime not dividing B, then up−( ∆ ) ≡ 0 (mod p). (∗) p Proof. If p | ∆, then up−( ∆ ) = up ≡ ( ∆ p ) = 0 (mod p). p If ( ∆ p ) = −1, then up−( ∆ ) = up+1 = Aup + vp ≡ A p ∆ p +A=0 (mod p). If ( ∆ p ) = 1, then up−( ∆ ) = up−1 p and 2Bup−1 = Aup − vp ≡ A ∆ p −A=0 (mod p). 10 / 42 Congruence properties of Lucas sequences The congruence p | up−( ∆ ) is actually an extension of Fermat’s p little theorem. If a 6≡ 0, 1 (mod p), then ap−1 − 1 = up−1 (a+1, a) = u (a+1)2 −4a (a+1, a) ≡ 0 p− a−1 p Example. If p is an odd prime, then 5 p (mod p), Lp ≡ 1 Fp ≡ = p 5 (mod p). (mod p), and Fp−( p ) ≡ 0 5 (mod p). For an odd prime p, we call the integer Fp−( p ) /p a Fibonacci 5 quotient. 11 / 42 D. D. Wall’s question In 1960 D. D. Wall [Amer. Math. Monthly] studied Fibonacci numbers modulo a positive integer systematically. Let p be an odd prime and let n(p) be the smallest positive integer n with p | Fn . Can Fn(p) be a multiple of p 2 ? Wall found no such primes. One can show that any positive integer d divides some positive Fibonacci numbers. Let n(d) be the smallest positive integer such that d | Fn(d) . Then Wall’s question is whether n(p) 6= n(p 2 ) for any odd prime p. 12 / 42 Zhi-Hong Sun and Zhi-Wei Sun’s contribution Theorem (Zhi-Hong Sun and Zhi-Wei Sun [Acta Arith. 60(1992)]). Let p 6= 2, 5 be a prime. (i) We have n(p) = n(p 2 ) ⇐⇒ p 2 | Fp−( p ) . 5 (ii) We have Fp−( p ) 5 p ≡2 p−1 X k=1 k≡−p (mod 5) 1 ≡ −2 k p−1 X k=1 k≡2p (mod 5) 1 k (mod p). (iii) If p 2 - Fp−( p ) , then the first case of Fermat’s last theorem 5 holds for the exponent p, i.e., there are no positive integers x, y , z with p - xyz such that x p + y p = z p . (iv) If p ≡ 1, 9 (mod 20) and p = x 2 + 5y 2 with x, y ∈ Z, then p | F(p−1)/4 ⇐⇒ 4 | xy . 13 / 42 Zhi-Hong Sun and Zhi-Wei Sun’s contribution (v) We can determine F(p±1)/2 and L(p±1)/2 mod p in the following way: ( 0 (mod p) if p ≡ 1 (mod 4), F(p−( p ))/2 ≡ 5 (p−3)/4 b(p+5)/10c 5 2(−1) ( p )5 (mod p) if p ≡ 3 (mod 4); F(p+( p ))/2 ≡ 5 L(p−( p ))/2 ≡ 5 L(p+( p ))/2 5 ( (−1)b(p+5)/10c ( p5 )5(p−1)/4 (mod p) if p ≡ 1 (mod 4), (−1)b(p+5)/10c ( p5 )5(p−3)/4 (mod p) if p ≡ 3 (mod 4); ( 2(−1)b(p+5)/10c ( p5 )5(p−1)/4 (mod p) if p ≡ 1 (mod 4), 0 (mod p) if p ≡ 3 (mod 4); ( (−1)b(p+5)/10c 5(p−1)/4 (mod p) if p ≡ 1 (mod 4), ≡ 5 (p+1)/4 b(p+5)/10c (−1) ( p )5 (mod p) if p ≡ 3 (mod 4). The obtained via expressing the sum P theorem was n k≡r (mod 10) k in terms of Fibonacci and Lucas numbers. 14 / 42 Wall-Sun-Sun primes R. Crandall, K. Dilcher and C. Pomerance [Math. Comp. 66(1997)] called those primes p satisfying Fp−(p/5) ≡ 0 (mod p 2 ) Wall-Sun-Sun primes. Heuristically there should be infinitely many Wall-Sun-Sun primes though they are very rare. Wall-Sun-Sun primes were also introduced in many papers and books including the famous book R. E. Cradall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, 2001. Up to now no Wall-Sun-Sun primes have been found. The current search record is due to F. G. Dorais and D. W. Klyve (2010): There are no Wall-Sun-Sun primes below 9.7 × 1014 . 15 / 42 Connection to cyclotomic fields S. Jakubec [Math. Comp. 67(1998)]: Let p = 2l + 1 ≡ 7 (mod 8) and q be odd primes with l a prime and p ≡ −5 (mod q). Suppose that the order of q modulo l is (l − 1)/2. If q divides the class number of the real cyclotomic field Q(ζp + ζp−1 ), then q must be a Wall-Sun-Sun prime. 16 / 42 Bernoulli polynomials and Fibonacci quotients Bernoulli numbers B0 , B1 , B2 , . . . are given by n X n+1 B0 = 1, Bk = 0 (n = 1, 2, 3, . . .). k k=0 Bernoulli polynomials are those n X n Bn (x) = Bk x n−k (n = 0, 1, 2, . . .). k k=0 Theorem (A. Granville and Z. W. Sun [Pacific J. Math. 1996]). Let p 6= 2, 5 be a prime. Then ap 5 Fp−( p ) 5 a 5 − Bp−1 ≡ · + qp (5) (mod p) Bp−1 5 5 4 p 4 for a = 1, 2, 3, 4, and for a = 1, 3, 7, 9 we have a ap 15 Fp−( p ) 5 5 Bp−1 −Bp−1 ≡ · + qp (5)+2qp (2) (mod p), 10 5 4 p 4 where qp (m) denotes the Fermat quotient (mp−1 − 1)/p. 17 / 42 Part B. On Fp−( p5 ) mod p 3 and some super congruences involving Fibonacci numbers 18 / 42 A curious identity and its consequence H. Pan and Z. W. Sun [Discrete Math. 2006]. If l, m, n ∈ {0, 1, 2, . . .} then l X l m−k 2k (−1) k n k − 2l + m k=0 l X l 2k n−l = . k n m + n − 3k − l m−k k=0 On the basis of this identity, for d, r ∈ {0, 1, 2, . . .} the authors constructed explicit F (d, r ) and G (d, r ) such that for any prime p > max{d, r } we have ( p−1 X F (d, r ) (mod p) if p ≡ 1 (mod 3), r k Ck+d ≡ G (d, r ) (mod p) if p ≡ 2 (mod 3), k=1 where Cn denotes the Catalan number 1 2n n+1 n . 19 / 42 Some congruences involving central binomial coefficients Let p be an odd prime. H. Pan and Z. W. Sun [Discrete Math. 2006]. p−1 X 2k p−d ≡ (mod p) (d = 0, . . . , p), k +d 3 k=0 p−1 2k X k ≡0 (mod p) for p > 3. k k=1 Sun & R. Tauraso [AAM 45(2010); IJNT 7(2011)]. a −1 a pX 2k p ≡ (mod p 2 ), k 3 k=0 p−1 2k X 8 k ≡ p 2 Bp−3 (mod p 3 ) for p > 3, k 9 k=1 p−1 X Fp−( p ) (−1)k 2k 5 ≡−5 (mod p) (p 6= 5). k k p k=1 20 / 42 Some auxiliary identities Sun and Tauraso [Adv. in Appl. Math. 2010]: Let n ∈ Z+ and d ∈ N. Then X 2k d X 2n n + d − k + = , k +d k 3 3 06k<n X 06k<n 06k<n+d k+d (−1) 2k k +d + F2d = X 06k<n+d k (−1) 2n F2(n+d−k) , k and X 2n X (−1)k+d 2k d + (−1)k L2(n+d−k) k k +d k 0<k<n 06k<n+d 2n − 1 n+d = L2d − (−1) 2 − δd,0 . n+d −1 21 / 42 On Pp−1 2k k=0 k /mk mod p 2 Z. W. Sun [Sci. China Math. 53(2010)]: Let p be an odd prime and let m ∈ Z with p - m. Then p−1 X k=0 2k k mk ≡ m2 − 4m p + up−( m2 −4m ) (m − 2, 1) (mod p 2 ). p In particular, p−1 X k=0 p−1 X k=0 (−1)k 2k k 2k 2k k ≡(−1)(p−1)/2 (mod p 2 ), ≡ p 5 1 − 2Fp−( p ) 5 (mod p 2 ) (p 6= 5). (Note that (−1)n−1 un (−3, 1) = un (3, 1) = F2n = Fn Ln .) 22 / 42 Two conjectures on Fibonacci and Lucas numbers Conjecture (Sun and Tauraso [Adv. in Appl. Math. 2010]) Let p 6= 2, 5 be a prime and let a ∈ Z+ . Then a −1 pX k=0 (−1)k 2k k ≡ pa 5 1 − 2Fpa −( pa ) (mod p 3 ). 5 Conjecture (Roberto Tauraso, Jan. 2010). For any prime p > 5 we have p−1 X Lk ≡ 0 (mod p). k2 k=1 These two conjectures are very sophisticated and difficult to prove. Theorem (Hao Pan and Z. W. Sun, arXiv:1010.2489). The two conjectures are true! 23 / 42 Another congruence for Fp−( p5 ) mod p 3 Theorem (Z. W. Sun, arXiv:0911.3060) Let p 6= 2, 5 be a prime and let a ∈ Z+ . Then ! a (p a −1)/2 2k Fpa −( pa ) X p k 5 ≡ 1+ (mod p 3 ). 5 2 (−16)k k=0 The proof is also very sophisticated and quite difficult. Below is a key lemma. Lemma. Let p 6= 2, 5 be an odd prime. For any a ∈ Z+ we have a Lpa − 1 p 1 − Fpa + 1 ≡ − Fp2a −( pa ) (mod p 4 ). 5 5 2 5 P (2) If we set Hk = 0<j6k 1/j 2 for k = 0, 1, 2, . . ., then ! p−1 p 5 Fp−( p ) 2 X 2k (2) 5 (−1)k Hk ≡ (mod p). k 5 2 p k=0 24 / 42 A further conjecture Conjecture (Sun, 2010). Let p be an odd prime and let a ∈ Z+ . (i) If p a ≡ 1, 2 (mod 5), or a > 1 and p 6≡ 3 (mod 5), b4p a /5c X 5 k 2k (−1) (mod p 2 ). ≡ pa k k=0 If pa ≡ 1, 3 (mod 5), or a > 1 and p 6≡ 2 (mod 5), then b3p a /5c X 5 k 2k (−1) (mod p 2 ). ≡ pa k k=0 (ii) If p ≡ 1, 7 (mod 10) or a > 2, then b7p a /10c 2k X 5 k ≡ (mod p 2 ). k pa (−16) k=0 If p ≡ 1, 3 (mod 10) or a > 2, then b9p a /10c 2k X 5 k ≡ (mod p 2 ). k pa (−16) k=0 25 / 42 Some other congruences involving Fibonacci numbers Theorem (Sun). For any prime p > 5, we have if p ≡ ±1 (mod 5), p−1 0 (mod p) X Fk 2k ≡ 1 (mod p) if p ≡ ±13 (mod 30), 12k k k=0 −1 (mod p) if p ≡ ±7 (mod 30). Theorem (Sun). Let p 6= 2, 5 be a prime. Then p−1 p X 2k (mod p 2 ), F2k ≡(−1)bp/5c 1 − 5 k k=0 p−1 p X 2k F2k+1 ≡(−1)bp/5c (mod p 2 ), k 5 k=0 (p−1)/2 X F2k 2k ≡(−1)(p−1)/2+bp/5c (mod p 2 ), 16k k k=0 (p−1)/2 p X F2k+1 2k (p−1)/2+bp/5c 5 + ( 5 ) ≡(−1) (mod p 2 ). k 4 16k k=0 26 / 42 A conjecture on 5-adic valuations Conjecture (Sun). For any n ∈ Z+ the number n−1 2k (−1)bn/5c−1 X F2k+1 sn := 2n 2 k (2n + 1)n n k=0 is a 5-adic integer and furthermore 6 (mod 25) if 4 (mod 25) if sn ≡ 1 (mod 25) if 9 (mod 25) if n ≡ 0 (mod 5), n ≡ 1 (mod 5), n ≡ 2, 4 (mod 5), n ≡ 3 (mod 5). Also, if a, b ∈ Z+ and a > b then the sum 5a −1 1 X 2k F2k+1 2a 5 k k=0 modulo 5b only depends on b. 27 / 42 A conjecture on q-Fibonacci numbers Recall that the usual q-analogue of n ∈ N is given by X 1 − qn = qk [n]q = 1−q 06k<n which tends to n as q → 1. For any n, k ∈ N with n > k, Q n 0<r 6n [r ]q Q = Q k q ( 0<s6k [s]q )( 0<t6n−k [t]q ) is a natural extension of the usual binomial coefficient kn . A q-analogue of Fibonacci numbers introduced by I. Schur is defined as follows: F0 (q) = 0, F1 (q) = 1, and Fn+1 (q) = Fn (q) + q n Fn−1 (q) (n > 0). Conjecture (Sun) Let a and m be positive integers. Then we have the following congruence in the ring Z[q]: 5aX m−1 2k q −2k(k+1) F (q) ≡ 0 (mod [5a ]2q ). k q 2k+1 k=0 28 / 42 Four series involving Fibonacci and Lucas numbers In Oct. 2010 Sun observed the following identities: ∞ X L2k 4π 2 π2 √ , , = 2k 2 2 5 25 5 k k k k k=1 k=1 ∞ ∞ 2k 2k X X 2π 2π k F2k+1 k L2k+1 = √ , = . k 5 (2k + 1)16k (2k + 1)16 5 5 ∞ X F2k = 2k k=0 k=0 √ In fact, they can be obtained by putting x = ( 5 ± 1)/2 in the known identities ∞ ∞ 2k x 2k+1 X X x x x 2k k arcsin = and = 2 arcsin2 . 2k k 2 2 (2k + 1)4 2 k2 k k=0 k=1 Note that π sin = 10 √ 5−1 3π and sin = 4 10 √ 5+1 . 4 29 / 42 Corresponding conjectural congruences Conjecture (Sun, 2010). Let p 6= 2, 5 be a prime and set q := Fp−( p ) /p. Then 5 p p (p−3)/2 p−1 X F2k k2 k=1 2k k p−1 X L2k k 2 2k k k=1 2k k ≡− p 3 5 5 q + p q2 2 4 (mod p 2 ), 15 5 ≡ − q − p q 2 (mod p 2 ), 2 4 1 F2k+1 5 2 (p+1)/2 p ≡(−1) q+ pq (mod p 2 ), 5 2 8 (2k + 1)16k k=0 (p−3)/2 2k X 5 2 (p+1)/2 5 k L2k+1 ≡(−1) q+ pq (mod p 2 ). 2 8 (2k + 1)16k X k=0 In Oct. 2011 K. Hessami Pilehrood and T. Hessami Pilehrood [arXiv:1110.5308] proved the last two congruences. 30 / 42 A conjecture related to p = x 2 + 15y 2 and p = 3x 2 + 5y 2 Conjecture (Z. W. Sun, Sept. 18, 2011). Let p > 5 be a prime. (i) If p ≡ 1, 4 (mod 15) and p = x 2 + 15y 2 (x, y ∈ Z) with x ≡ 1 (mod 3), then p−1 X k k=0 p−1 X k=0 and p−1 X k=0 2k k 3k k 27k 2k 3k k k 27k (3k + 2) Fk ≡ 2 p − 2x (mod p 2 ), 15 x Lk ≡4x − 2k k 3k k 27k p (mod p 2 ) x Lk ≡ 4x (mod p 2 ). 31 / 42 A conjecture related to p = x 2 + 15y 2 and p = 3x 2 + 5y 2 (ii) If p ≡ 2, 8 (mod 15) and p = 3x 2 + 5y 2 (x, y ∈ Z) with y ≡ 1 (mod 3), then p−1 X 2k k 3k k 27k k=0 Fk ≡ p − 4y 5y (mod p 2 ) and p−1 X k k=0 2k k 27k 3k k Fk ≡ p−1 X k k=0 2k k 27k 3k k 4 Lk ≡ y 3 (mod p 2 ). Remark. Sun has many other similar conjectures. 32 / 42 Part C. Proof of Pp−1 Lk k=1 k 2 ≡ 0 (mod p) for any prime p > 5 33 / 42 Granville’s work Let p be an odd prime. Glaisher proved that p−1 1 X 2k qp (2) ≡ − 2 k (mod p). k=1 A. Granville [Integers 4(2004)] confirmed the following conjecture of L. Skula: p−1 k X 2 qp (2)2 ≡ − (mod p). k2 k=1 Define p−1 X xk x p + (1 − x)p − 1 and G (x) = . q(x) = p k2 k=1 Granville showed that if p > 3 then G (x) ≡G (1 − x) + x p G (1 − x −1 ) (mod p), q(x)2 ≡ − 2x p G (x) − 2(1 − x p )G (1 − x) (mod p). 34 / 42 A lemma and a proposition Combining the last two congruences we obtain Lemma. Let p > 3 be a prime. Then x p + (1 − x)p − 1 p 2 ≡ −2 p−1 X (1 − x)k k=1 k2 −2x 2p p−1 X (1 − x −1 )k k=1 k2 (mod p) Proposition. Let A and B be nonzero integers, and let α and β be the two roots of the equation x 2 − Ax + B = 0. Let p be an odd prime not dividing AB. Then vp (A, B) − Ap p 2 ≡ −2A2 p−1 p−1 X X αk α2k 2p −2β (mod p), Ak k 2 (−B)k k 2 k=1 k=1 and p−1 k k p−1 X X vp (A, B) − Ap 2 αk A α p 2p ≡ −2Aα − 2β (mod p). k 2 p A k Bkk2 k=1 k=1 35 / 42 Proof of the proposition By the lemma and Fermat’s little theorem, 1 x p + (A − x)p − Ap 2 A2 p p (x/A) + (1 − x/A)p − 1 2 ≡ p p−1 p−1 x 2p X X (1 − x/A)k (1 − A/x)k − 2 (mod p). ≡−2 k2 A k2 k=1 k=1 βp αp Note that vp (A, B) = + = + (A − β)p and αβ = B. So we have p−1 X vp (A, B) − Ap 2 (A − β)k 2 ≡ − 2A p Ak k 2 − 2β βp k=1 p−1 X 2p k=1 (1 − Aα/B)k (mod p) k2 and hence the first desired congruence holds since Aα − B = α2 . 36 / 42 Proof of the proposition (continued) On the other hand, αp (Ap − vp (A, B)) = αp (Ap − αp − β p ) = (B + α2 )p + (−α2 )p − B p and hence p 2 2p A − vp (A, B) α p 2 2 p (−α ) + (B − (−α2 ))p − B p = p ≡ − 2B = − 2B 2 p−1 X (1 − (−α2 )/B)k 2 k=1 p−1 X k=1 ≡ − 2(αβ)2p k2 2 2p − 2(−α ) p−1 X (1 − B/(−α2 ))k k=1 k2 p−1 X (Aα)k (Aα)k 4p − 2α Bkk2 α2k k 2 k=1 p−1 X k=1 (Aα)k Bkk2 − 2Aα3p p−1 X k=1 αp−k (mod p). Ap−k (p − k)2 Therefore the second desired congruence follows. 37 / 42 Proof of Pp−1 k=1 Lk /k 2 ≡ 0 (mod p) P p−1 Let p > 5 be a prime. We prove k=1 Lk /k 2 ≡ 0 (mod p). Let α and β be the two roots of the equation x 2 − x − 1 = 0. Applying the Proposition with A = 1 and B = −1, we get p−1 k p−1 2k X X Lp − 1 2 α α 2p ≡−2 − 2β (mod p), (1) p k k2 k=1 k=1 p−1 k p−1 X X Lp − 1 2 α (−α)k 2p ≡ − 2αp − 2β (mod p). (2) p k2 k2 k=1 k=1 2p−1 p−1 j X X 2α2k j α = (1 + (−1) ) (2k)2 j2 k=1 j=1 p−1 k X α + (−α)k αp+k + (−α)p+k = + k2 (p + k)2 k=1 p ≡(1 + α ) p−1 k X α k=1 k2 p + (1 − α ) p−1 X (−α)k k=1 k2 (mod p), 38 / 42 Proof of Pp−1 k=1 Lk /k 2 ≡ 0 (mod p) so (1) can be rewritten as Lp − 1 p 2 p 2p ≡ − 2(1 + 2(1 + α )β ) p−1 k X α k=1 p − 4(1 − α )β 2p p−1 X (−α)k k=1 k2 k2 (mod p). (3) Multiplying (2) by 2(1 − αp ) and then subtracting it from (3) we obtain p (2α − 1) Lp − 1 p 2 p−1 k X α ≡ 4α (1 − α ) − 2 − 4(1 + α )β k2 p p p 2p k=1 =(4Lp − 4L2p − 2) p−1 X k=1 αk k2 (mod p). 39 / 42 Proof of Pp−1 k=1 Lk /k 2 ≡ 0 (mod p) Now that Lp ≡ 1 (mod p) and L2p = α2p +β 2p ≡ (α2 +β 2 )p = (α + β)2 − 2αβ p = 3p ≡ 3 (mod p), we have p (2α −1) Lp − 1 p 2 ≡ (4−4×3−2) p−1 k X α k=1 k2 = −10 p−1 k X α k=1 k2 (mod p). Similarly, p (2β − 1) Lp − 1 p 2 ≡ −10 p−1 k X β k=1 k2 (mod p). As 2αp − 1 + (2β p − 1) = 2Lp − 2 ≡ 0 (mod p), we finally obtain p−1 X Lk k=1 k2 = p−1 k X α + βk ≡ 0 (mod p). k2 k=1 40 / 42 More conjectures on congruences For more conjectures of mine on congruences, see Z. W. Sun, Open Conjectures on Congruences, arXiv:0911.5665 which contains 100 unsolved conjectures raised by me. You are welcome to solve my conjectures! 41 / 42 Thank you! 42 / 42