Download test I (sol)

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
國立中山大學 102 學年度普通物理(二)期中考
103.04.23
答題須知:
一、請由答題紙第六列開始填寫,並標明題號。考試時間為 19:00~21:30,20:00 以後方可交卷。
二、請詳述相關物理觀念及計算過程,記得寫上單位,建議以M.K.S制表示。
e
1. (12%) An electron is constrained to the central axis of the ring of
q
charge of radius R in Fig. 1, with z << R. Find (a) the electrostatic
force on the electron and (b) the period of the electron oscillate
through ring center with simple harmonic motion. (If q is the ring’s
charge, m is the electron mass, and e is the electron charge.)
Fig. 1
(a) 在 ring 上取一基素 ds,含電量 dq,dq =  ds
dE
P
其中 = charges per unit length
dq
ds
ds
 dE 

【2%】 
2
2
40 r
40 r
40 ( R 2  z 2 )
1
-
e
-

q
r
z
在 ring 上之電荷於 P 點所產生之電場:
ds
垂直於 z 軸之總和為零。
【1%】
平行於 z 軸為 E z   dE cos  

ds
z
 ,
40 ( R  z ) r
2
z
40 ( R  z )
2
2 3/ 2

2R
0
2
ds 
r = (z2 + R2)1/2
2Rz
qz

【2%】
2
2 3/ 2
40 ( R  z )
40 ( R 2  z 2 ) 3 / 2
其中,q = 2Rz.
故在 P 點之電子受力 F 
 eqz
(在-z 方向) 【1%】
40 ( R 2  z 2 ) 3 / 2
(b) 當 R >> z
F
 eqz
d 2z

m
40 R 3
dt 2
2 
【3%】
eq
2
 ( )2
3
T
40 mR
40 mR3
 T  2
eq
【2%】
【1%】
2. (12%) (a) The nucleus in an iron atom has a radius of about 4.0  10-15 m and contains 26
protons. (i) What is the magnitude of the repulsive electrostatic force between two of the protons
that are separated by 4.0  10-15 m? (ii) What is the magnitude of the gravitational force between
those same two protons? [ G = 6.67×10-11 Nm2/kg2; mp = 1.67×10-27 kg; 0 = 8.854×10-12 F/m]
(b) Charge is distributed uniformly throughout the volume of an infinitely long solid cylinder of
r
radius R. Show that, at a distance r < R from the cylinder axis, E 
, where  is the volume
2 0
charge density.
(a) (i) Charge of proton is +e
F 
19 2
1 e2
)
9 (1.6 10
【2%】
 14 Nts

9

10
2
15 2
40 r
(4.0 10 )
【1%】
(ii) Mass of proton mp = 1.67×10-27 kg
F G
m 2p
r2
【2%】  6.67 10 11
(1.67 10 27 ) 2
 1.2  10-35 Nts 【1%】
(4.0 10 15 ) 2
(b) 設高斯面為圓柱形,半徑為 r,長度 l,所含之電荷為 qenc。
由 Gauss’ law
  qenc
E
  dA   0 【2%】, qenc = ( r2 l) 
E (2rl ) 
高斯面
r
(r 2l ) 
0
r
E 
【4%】
2 0
R
Cross section of
charged cylinder
(end view)
3. (12%) Fig. 2 is showing a charged particle (either an electron or a proton) moving
rightward between two parallel plates separated by distance d  2(mm) . The
potential are V1 = 70.0(V) and V2 = 50.0(V). The particle is accelerating from an
initial speed of 90.0(m/s) at the left plate. (a) Is the particle an electron or a proton?
(b) Find the electric field E at a point between two parallel plates. (c) What is its
speed just as it reaches plate 2. The mass of electron is 9.10 1031 (kg) , and the
mass of proton is 1.67 1027 (kg) .
V1  70(V ), V2  50(V )
(a)
∴
V1  V2
正電荷從高電位移向低電荷
負電荷從低電位移向高電荷
今質點從 V1 移向 V2
故質點為電子
(b) 由
V2
2
V1  V2    dV   E  ds
V1
1
2
d
  E  dx   Ex dx  Ex d
1
Ex 
0
V1  V2 (70  50)(V)

 104 (V/m)
d
2 103 (m)
ˆ x  iˆ104 (V/m)
E  iE
(c) 電子從左極板至右極板所降低之電能為
W  q(V1  V2 )  e(70  50)(V )  20(eV )
降低之電能化成電子增加之動能
W  Ek 
v
1
me (v 2  vo2 )
2
2W
2(20  1.6  1019 J )
 vo2 
 (90m/s) 2
31
me
9.10  10 (kg)
 2.61106 (m/s)
Fig. 2
4. (12%) Charge Q is uniformly distributed inside a spherical region of
radius R in Fig. 3. Find both (a) electric field, and (b) electric potential at
point P a distance r ( r  R and r  R ) from the center of the sphere. (c)
What is the electric potential at the center of the sphere?
Fig. 3
(a) 根據應用高斯定律的經驗得知以下之結論:
(1) 球狀對稱分佈之電荷, 在電荷分佈範圍以外之區域產生之電場, 如同全部電荷全部
集中於球心形成點電荷所產生之電場. 如此, 則於下左圖中, P 點之電場為
Q
E
rˆ, (r  R)
4 o r 2
(2) 下圖中之 P 點在球狀對稱分佈電荷範圍以內. 位於半徑為 r 之球狀範圍(如虛線所
示)以外之電荷, 在 P 點產生之總電場為零,而位於半徑為 r 之球狀範圍以內之總電
Qr 3
像是集中於球心之點電荷, 在 P 點產生電場, 其值為
R3
Qr
E
rˆ, (r  R)
4 o R 3
荷Q' 
(b) 在空間任意取兩點 a 及 b , 此二點與球心之距離分別為 ra 及 rb ,二點之電位分別為 Va 及
rb
Vb . 由電位差與電場之關係 Va  Vb   E  ds
ra
當電荷分佈在有限區域時, 無窮遠處之電場與電位皆趨於零. 故可設定
rb   時, Vb  0 以及 ra  r 時, Va  V .


r
r
V   E  ds =  Edr 又因電位有連續性
故上式可寫成
r  R 之區域
V 

r
Q
4 o r
2
dr 
Q
4 o


r
1
Q
dr 
2
r
4 o r
r  R 之區域
V 
R
r

Qr
Q
Q( R 2  r 2 )
Q
dr
+
dr


3
2
3

R 4 r
4 o R
8 o R
4 o R
o
(c) 在球心, 即 r  0 處, 電位為
V=
3Q
8 o R
5. (12%) A solid cylindrical conductor of radius a and charge Q is coaxial with a
cylindrical shell of negligible thickness, radius b > a, and charge –Q (Fig. 4).
Find the capacitance of this cylindrical capacitor if its length is ℓ >> a and b.
Please answer the capacitance in terms of ℓ, a and b.
Fig. 4
Using Gauss law to find electric field:


 E  dA 
qenc
0

1 Q
E
rˆ 【5%】
2rl  0
a
 
1 Q
Q
b
Electrical potential difference from b to a: V   E  dr  
【5%】
dr 
ln
2rl  0
20l a
b
b
a
Capacitance: C 
Q 20l

【2%】
b
V
ln
a
6. (10%) Two capacitors C1 and C2 (where C1 > C2)
are charged to the same initial potential difference
Vi. The charged capacitors are removed from the
battery, and their plates are connected with
opposite polarity as in Fig. 5(a). The switches S1
Fig. 5
and S2 are then closed as in Fig. 5(b). (a) Find the
final potential difference Vf between a and b after the switches are closed. (b) Determine the
ratio of the final energy (switches closed) to the initial energy (switches open).
(a) total charge Qi  Q1i  Q2i  (C1  C2 )Vi before S1 and S2 are closed. 【2%】
Charge redistribution after S1 and S2 are closed, Q f  Q1 f  Q2 f  (C1  C2 )V f 【2%】
Charge conservation: Qi  Q f  (C1  C2 )V  (C1  C2 )V f
V f 
(b) U i 
C1  C2
Vi .【2%】
C1  C2
1
1
1
C1Vi 2  C2 Vi 2  (C1  C2 )Vi 2
2
2
2
1
1
1
1
C  C2
1 (C1  C2 ) 2
U f  C1V f2  C2 V f2  (C1  C2 )V f2  (C1  C2 )[ 1
Vi ]2 
Vi 2
2
2
2
2
C1  C2
2 C1  C2
U
C  C2 2
 f ( 1
) 【4%】
Ui
C1  C2
7. (16%) In the circuit of Fig. 6, ε = 1.2 kV, C = 8.5 F, R1 = R2 =
R3 = 0.55 MΩ. With C completely uncharged, switch S is
suddenly closed (at t = 0). At t = 0, what are (a) current I1 in

resistor 1, (b) current I2 in resistor 2, and (c) current I3 in
resistor 3? At t = ∞ (that is, after many time constants), what
are (d) I1,(e) I2, and (f) I3? What is the potential difference V3
across resistor 3 at (g) t = 0 and (h) t = ∞?
(a) t  0
-I1R-I2R = 0
-I1R-I3R = 0

 = 3IR  I1  2 I 
(b) I 2  I 

3R
I2 = I3 = I  I1 = 2I
2
2 1200

 1.45 10 3 (A) 【2%】
6
3R 3  0.55 10
 7.3 10 4 (A) 【2%】
(c) I 3  I 2  7.3 10 4 (A) 【2%】
(d) t  
I3 = 0  I1 = I2
-2I1R = 0  I1 

2R
 1.09  10 3
(A)
【2%】
(e) I 2  I1  1.09 10 3 (A) 【2%】
(f) I3 = 0 【2%】
(g) I1 = I2+I3
-I1R-I2R = 0  -2I2R-I3R = 0 
I2 R  I3R 
I3 
dQ
dt
Q
C



2

I3R
Q
 I3R 
2
C
3 dQ Q 
R
 
2 dt C 2

t
C
(1  e 3 RC )
 Q(t ) 
2
2
dQ   3 RC t

e
 I3 
dt 3R
2
t0
V3 

3R
R

3
 400 (V)
(h) t  
I3 = 0 => V3 = 0
【2%】
【2%】

I2 

  I3R
2R
3
Q
 I3R   0
2 2
C
Fig. 6
8. (14%) A circular loop of wire having a radius of 8.0 cm carries a current of 0.20 A. A vector of
unit length and parallel to the dipole moment
of the loop is given by 0.60iˆ  0.80 ˆj . (This
unit vector gives the orientation of the magnetic dipole moment vector.) If the loop is located in

a uniform magnetic field given by B  (0.25T )iˆ  (0.30T )kˆ , find (a) the torque on the loop (in
unit-vector notation) and (b) the orientation energy of the loop.



The magnetic dipole moment is    (0.6i  0.8 j ) , where
 = NiA = Nir2 = 1(0.20 A) (0.080 m)2 = 4.02  10–3 A·m2.
  
(a) The torque is     B ……. 【2%】





……. 【4%】



  4.02 10 3 (0.6i  0.8 j )  (0.25i  0.3k )  4.02 10 3 (0.18 j  0.2k  0.24i )




  (9.7 10 4 i  7.2 10 4 j  8.0 10 4 k ) N  m …………. 【3%】
 
(b) The orientation energy of the dipole is given by U     B ……. 【2%】




U  4.02 10 3 (0.6i  0.8 j )  (0.25i  0.3k )  6.0 10 4 J
……. 【3%】
Related documents