Download Prezentace aplikace PowerPoint

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
We will be looking for a solution
 y  x, y  x,
1
2
, yn  x  
T
to the system of linear differential equations with constant
coefficients in a cannonical form
y1'  a11 y1  a12 y2 
 a1n yn  f1  x 
y2'  a21 y1  a22 y2 
 a2 n y n  f 2  x 
yn'  an1 y1  an 2 y2 
 ann yn  f n  x 
Satisfying the initial condition
 y1  x0  , y2  x0  ,
, yn  x0     b1 , b2 ,
T
, bn 
T
As the first step, we will find a general solution to the associated
homogeneous system
y1'  a11 y1  a12 y2 
 a1n yn
y2'  a21 y1  a22 y2 
 a2 n y n
yn'  an1 y1  an 2 y2 
 ann yn
It can be proved that such a system has n independent vector
solutions, which can be displayed as columns in the matrix
 y11
y
Y   21


 yn1
y12
y22
yn 2
y1n 
y2 n 



ynn 
 y11
y
Y   21


 yn1
y12
y22
yn 2
y1n 
y2 n 



ynn 
is called the fundamental solution matrix to the system
y1'  a11 y1  a12 y2 
 a1n yn
y2'  a21 y1  a22 y2 
 a2 n y n
yn'  an1 y1  an 2 y2 
 ann yn
 a11
a
Denoting A   21


 an1
The system
a1n 
a2 n 



ann 
a12
a22
an 2
y1'  a11 y1  a12 y2 
 a1n yn
y2'  a21 y1  a22 y2 
 a2 n y n
yn'  an1 y1  an 2 y2 
 ann yn
can be written as
y ,y ,
'
1
'
2

' T
n
,y
 A  y1 , y2 ,
, y2 
T
The derivative of the fundamental solution matrix
 y12'
 '
y21
'

Y 

 '
 yn1
y12'
'
y22
yn' 2
satisfies the matrix equation
Y '  AY
y1' n 
' 
y2 n 

' 
ynn 
Let us examine the matrix function
2
3
x
x
x
e xA  E  A  A2  A3 
1!
2!
3!
We have
de xA
x 2 x2 3
 A A  A 
dx
1!
2!
 Ae xA
so that e xA satisfies the matrix differential equation Y '  AY
xA
The matrix e is a fundamental solution matrix to the system
y1'  a11 y1  a12 y2 
 a1n yn
y2'  a21 y1  a22 y2 
 a2 n y n
yn'  an1 y1  an 2 y2 
 ann yn
It can be proved that any solution to the above system can be
written as
 y1 
 c1 
where
y 
c 
 2   e xA  2 
c1 , c2 , , cn
 
 
 
 
are constants
y
 n
 cn 
The general solution to the system
y1'  a11 y1  a12 y2 
 a1n yn  f1  x 
y2'  a21 y1  a22 y2 
 a2 n y n  f 2  x 
yn'  an1 y1  an 2 y2 
 ann yn  f n  x 
can be written as
 y1 
 c1   y1 
y 
c   
 2   e xA  2    y2 
 
   
 
   
 yn 
 cn   yn 

where y1 , y2 ,
, yn

T
is any solution to
We need to find a particular solution to the system
y1'  a11 y1  a12 y2 
 a1n yn  f1  x 
y2'  a21 y1  a22 y2 
 a2 n y n  f 2  x 
yn'  an1 y1  an 2 y2 
 ann yn  f n  x 
To this end we will again use the variation-of-constants method
Let Y be a fundamental matrix solution to the system
and
 c1  x  


 c2  x  




 cn  x  
y1'  a11 y1  a12 y2 
 a1n yn
y2'  a21 y1  a22 y2 
 a2 n y n
yn'  an1 y1  an 2 y2 
 ann yn
a vector of differentiable functions
Substituting
 y1 
 c1  x  
 


c2  x  
 y2 

  Y 

 


y 
 cn  x  
 n
into
y1'  a11 y1  a12 y2 
 a1n yn  f1  x 
y2'  a21 y1  a22 y2 
 a2 n y n  f 2  x 
yn'  an1 y1  an 2 y2 
 ann yn  f n  x 
 c1'  x  
 c1  x  
 c1  x    f1  x  
 '




 

c
x
c
x
f
x
c
x
   2  
2    2  

yields Y '  2
Y
 AY






 

 '




 

c
x
c
x
f
x
c
x
 n  
 n    n  
 n  
but, since Y is a solution to the associated homogeneous system,
we have Y '  AY and thus
 c1  x  
 c1  x  




c
x
c
x
2  
'  2  

Y
 AY








c
x
c
x
 n  
 n  
This leaves us with the system
 c1'  x    f1  x  
 '
 

f
x
c
x
2  
2  


Y


 

 '
 

f
x
c
x
 n    n  
This is basically a system of linear algebraic equations with
 c1'  x  
 '

c
x
 2  


 '

c
x
 n  
as the vector of
unknowns
Y
as the system
matrix
 f1  x  


f
x
 2  




f
x
 n  
as the righthand-side
column
If
 h1  x  
 c1'  x    f1  x  


 '
 

h
x


 2
 is a solution to Y  c2  x     f 2  x  



 



 '
 

h
x


 n

 cn  x    f n  x  
 h1  x  dx 
 y1 



 
 h2  x  dx 
 y2 


Y


 


 


y 
  hn  x  dx 
 n


is the particular solution we are looking for
If, in addition, the solution has to satisfy a set of initial conditions
0
0
y
,
y
 1 2,
, yn0  at a point x0, we have to find the coefficients
c1, c2, ..., cn in the general solution
 y1 
 c1   y1 
y 
c   
 2   e xA  2    y2 
 
   
 
   
 yn 
 cn   yn 
This can be done by solving the system of linear algebraic
equations
 y10 
 c1   y1  x0  

 0
c  
 y2   e x0 A  2    y2  x0  

 
  

 0
  
 cn   yn  x0  
 yn 
Related documents