Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Phys 570 Lab 1 Measurement of refractive index by Brewster’s Angle method Fresnel’s equations and Brewster’s angle Electromagnetic wave Linearly Polarized light p-polarized light E E Electric vector E S-polarized light S-polarized light Perpendicular or vertical p-polarized light Horizontal Laser Light – Linearly polarized. 45 degrees Resultant www.Photophysics.com Laser light is linearly polarized. Use 45 degree polarizer in front of the laser light. This make the relative intensities of the s and p components the same, the light is polarized at 45 degrees. Laser light – Linearly polarized 450 polarizer Incident light Reflected light qi qr S-polarization , coming out of page qt P-polarization , parallel to page Transmitted light Brewster’s angle setup Photodetector Analyzer Sample Slit 450 Polarizer Laser Pbo 50:50 Angle 75 70 65 64 63 62 61 60 59 58 57 56 55 50 45 40 Total Light Polarized light 4.54 35 2.51 40.4 0.52 26 0.34 20.6 0.26 19.7 0.23 19.1 0.15 12.9 0.15 14.5 0.16 14.9 0.15 13.1 0.18 12.9 0.21 12.3 0.24 11.7 0.37 6.75 0.59 5.68 0.87 5.32 Ratio= Polarized light/Total light 0.129714286 0.062128713 0.02 0.016504854 0.01319797 0.012041885 0.011627907 0.010344828 0.010738255 0.011450382 0.013953488 0.017073171 0.020512821 0.054814815 0.103873239 0.163533835 14 y = 0.0508x2 - 6.0695x + 182.09 R² = 0.9976 12 Ratio% 10 8 Series1 6 Poly. (Series1) 4 2 0 40 50 60 Angle (θ) 70 80 Ratio% 12.971 6.2129 2 1.6505 1.3198 1.2042 1.1628 1.0345 1.0738 1.145 1.3953 1.7073 2.0513 5.4815 10.387 16.353 Definitions: Planes of Incidence and the Interface and the polarizations Perpendicular (“S”) Incident medium polarization sticks out X of or into the plane of incidence. ki polarization lies parallel to the plane of incidence. ni qi qr Interface Plane of the interface (here the yz plane)y(perpendicular to page) qt z Parallel (“P”) Er Ei Plane of incidence (here the xy plane) is the plane that contains the incident and reflected kvectors. kr nt x Et kt Transmitting medium Fresnel’s Equations ki kr Ei Fraction of a light wave reflected and transmitted by a flat interface between two media with different refractive indices. for the perpendicular polarization qi qr Plane of the interface (here the yzy plane) (perpendicular qt to page) x z Et k t s-polarized Eot Eor t r Eoi Eoi Er ni ni nt nt p-polarized Eor r Eoi Eot t Eoi for the parallel polarization where Eoi, Eor, and Eot are the field complex amplitudes. We consider the boundary conditions at the interface for the electric and magnetic fields of the light waves. We’ll do the perpendicular polarization (s-polarized) first. s-polarized Eot Eor t r Eoi Eoi for the perpendicular polarization Perpendicular polarization (s) Boundary Condition for the Electric Field at an Interface The Tangential Electric Field is Continuous In other words: The total E-field in the plane of the interface is continuous. Here, all E-fields are in the z-direction, which is in the plane of the interface (xz) ki kr Er Ei ni qi qr Br Bi Plane of the interface (here the yz plane)y(perpendicular to page) qt z x Bt Eoi Eor Eot Et nt kt Perpendicular polarization (s) Boundary Condition for the Magnetic field at an Interface The Tangential Magnetic Field is Continuous ki In other words: kr Er Ei The total B-field in the plane of the interface is continuous. ni qi qr Br Bi Plane of the interface (here the yz plane)y(perpendicular to page) qt Here, all B-fields are in the xy-plane, so we take the x-components: x z Et kt Bt Boi m cos qi Bor m cos q r we're using non magnetic material m 1 nt Bot m cos qt Reflection & Transmission Coefficients for Perpendicularly (s) Polarized Light E0i E0 r E0t B0i cos(qi ) B0 r cos(q r ) B0t cos(qt ) But B nE and q r qi : ni ( E0r E0i ) cos(qi ) nt E0t cos(qt ) E0i E0 r E0t ni ( E0 r E0i ) cos(qi ) nt E0t cos(qt ) A Reflection & Transmission Coefficients for Perpendicularly (s) Polarized Light Solving for E0 r in Equation A yields the reflection coefficient : E0i E0 r ni cos(q i ) nt cos(qt ) r E0i ni cos(qi ) nt cos(qt ) Analogously, the transmission coefficient, Lab report E0t , is E0i E0t 2ni cos(qi ) t E0i ni cos(qi ) nt cos(qt ) These equations are called the Fresnel Equations for perpendicularly polarized light. Lab report Parallel polarization (p) Boundary Conditions for the Electric Field and magnetic field at an Interface ki Bi kr Br ni qi qr Ei Plane of the interface (here the yz plane)y(perpendicular to page) Er qt z Bt x Et nt kt E0i cos(qi ) E0 r cos(q r ) E0t cos(qt ) B0i B0 r B0t Reflection & Transmission Coefficients for Parallel (P) Polarized Light But B nE and q r qi : ni ( E0r E0i ) cos(qi ) nt E0t cos(qt ) ni ( E0i E0 r ) nt E0t ( E0 r E0i ) cos(qi ) E0t cos(qt ) B Solving for E0 r / E0i in Equation B yields the reflection coefficient : E0 r ni cos(qt ) nt cos(qi ) r|| E0i ni cos(qt ) nt cos(qi ) Lab report Analogously, the transmission coefficient, E0t / E0i , is E0t 2ni cos(qi ) t|| E0i ni cos(qt ) nt cos(qi ) Lab report These equations are called the Fresnel Equations for parallel polarized light. Reflection Coefficients for an Air-to-Glass Interface E0 r ni cos(qt ) nt cos(qi ) r|| E0i ni cos(qt ) nt cos(qi ) tan(qi qt ) r tan(qi qt ) sin(qi qt ) E0 r ni cos(qi ) nt cos(qt ) r r sin(qi qt ) E0i ni cos(qi ) nt cos(qt ) Lab report Reflectance Reflectance (Intensity reflection coefficient ) is the square of the amplitude of reflection coefficient R = r2 2 tan (qi qt ) 2 R r tan 2 (qi qt ) 2 sin (qi qt ) 2 R r 2 sin (qi qt ) qi qt 900 15% 4% qi q B Brewster's angle R r 2 0 R r2 sin 2 (qi qt ) nt tan q B Lab report Fluorescence of rare earth Sm3+ (Samarium) ions in borate glasses. Schematic representation of luminescence Vibrational relaxation Excited state Triplet State Ground state Absorption Fluorescence Phosphorescence https://www.thermofisher.com/us/en/home/s upport/tutorials.html Your ion Electronic Configuration of neutral rare earth atoms Number Element Symbol Electronic configuration 54 Xenon Xe 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 58 Cerium Ce 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f1 5d1 59 Praseodymium Pr 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f3 60 Neodymium Nd 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f4 61 Promethium Pm 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f5 62 Samarium Sm 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f6 63 Europium Eu 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f7 64 Gadolinium Gd 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f7 5d1 65 Terbium Tb 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f9 66 Dysprosium Dy 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f10 67 Holmium Ho 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f11 68 Erbium Er 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f12 69 Thulium Tm 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f13 70 Ytterbium Yb 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 71 Lutetium Lu 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d1 Trivalent rare earth ion – remove 3 electrons Atomic Term Symbols Free ions can be described by Term Symbols: 2S + 1L J Ground-State Term Symbols for Any Electronic Configuration: The Ground State has: 1. Choose Maximum S value 2. Choose Maximum L value 3. Choose J value: (a) smallest J value if orbital sub-shell is J = L-S less than half-filled (b) largest J value if orbital sub-shell is J = L+S greater than half-filled 22 Free ions can be described by Term Symbols: 2S + 1L J where: • 2S + 1 is spin multiplicity • L is Total orbital angular momentum • J is the spin, orbit (L + S) coupling Multiplicity: 2S + 1 is calculated from number of unpaired electrons S = 0 (all paired), S = 1/2 (one unpaired) , S = 1 (2 unpaired) , S = 3/2 (3 unpaired) , etc. If total L = (Ltotal = l1 + l2 + … for each electron) L = 0 -> S symbol L = 1 -> P symbol L = 2 -> D symbol L = 3 -> F symbol Russell-Saunders Coupling: J ranges from L + S, …, L-S and all integers in between 23 Atomic Term Symbols 2S + 1L J Carbon atom with electronic configuration 1s 2 2 s 2 2 p 2 G! 6! 15 states N !(G N )! 2!(6 2)! ml= 0 ml= 0 ml= 1 0 -1 L (l1 l2 )...........(l1 l2 ) L 2,1, 0 S ( s1 s2 ).........( s1 s2 ) Ground state of Carbon 3 P0 S 0,1 Since both electrons are in the same subshell p, they have to satisfy Pauli's exclusion principle. L S (2L+1)=M L and (2S+1)=M S 2 0 (2L+1)(2S+1) 5 1 5 states = 1 D = 1 D 2 1 1 (2L+1)(2S+1) 3 3 = 9 states = 3 P = 3 P2 , 3 P1 , 3 P0 0 0 (2L+1)(2S+1) 11 = 1state = 1S = 1S0 24 1 D2 J 2 M J 2, 1, 0, 1, 2 3 3 P2 J 2 M J 2, 1, 0, 1, 2 5 5 states 3 P1 J 1 M J 1, 0, 1 + 3 P0 J 0 MJ 0 + 1 = 9 states 1 S0 J 0 MJ 0 1 state Total = 5+9+1 = 15 states 25 15 states 1 S0 Energy levels of Carbon atom 1 1 S 2 2s 2 p 1 2 D 3 H0 Central field Hamiltonian D2 3 P2 P HC 3 Coulomb Interaction Hamiltonian 3 P1 MJ 0 +2 +1 0 -1 -2 +2 +1 0 -1 -2 +1 0 -1 P0 HS-O Spin-orbit Interaction Hamiltonian 0 Hund’s Rules 1 1 S0 D2 3 P2 3 P1 3 P0 1.State with the largest value of S is most stable and stability decreases with decreasing S. 2.For states with same values of S, the state with the largest value of L is the most stable. 3.If states have same values of L and S then, for a subshell that is less than half filled, state with smallest J =L-S is most stable; for subshells that are more than half filled, state with largest value of J = L+S is most stable. 27 Atomic Term Symbols Praseodymium Praseodymium neutral atom with electronic configuration 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f3 Praseodymium trivalent ion with electronic configuration 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 4f2 3 4f 2 1 0 -1 2 -2 -3 Ground state of trivalent Praseodymium ion 3 G! N !(G N )! H4 14! Total States : 91 states 2!(14 2)! L l1 l2 ...........l1 l2 l1 3 and l2 3 L 6, 5, 4 S s1 s2 .........s1 s2 S 0,1 28 Trivalent Praseodymium ion 1 S0 3 P2 L S (2L+1)=M L and (2S+1)=M S 1 6 0 (2L+1)(2S+1) 13 1 13 states = 1 I = 1I 6 3 P1 1 (2L+1)(2S+1) 11 3 33 states = H = H 6 , H 5 , H 4 3 P0 0 (2L+1)(2S+1) = 9 1 = 9 states = G = G4 1 (2L+1)(2S+1) 7 3 = 21 states = F = F4 , F3 , F2 3 2 0 (2L+1)(2S+1) 5 1 = 5states = D = D2 F4 3 1 1 (2L+1)(2S+1) = 3 3 = 9 states = 3 P = 3 P2 , 3 P1 , 3 P0 F3 3 F2 0 0 (2L+1)(2S+1) = 11 =1 state = 1S = 1S0 3 H6 3 H5 3 H4 5 4 3 3 3 1 3 3 1 3 1 Total = 91 states 3 1 I6 D2 1 3 3 G4 1 29 Trivalent Praseodymium ion Energy levels Trivalent Samarium ion Energy levels 62 Samarium Excitation Sm 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f6 Emission 4I13/2 Fluorescence 4 I 4 11/2 M 15/2 20 4 G5/2 4 G 5/2 707 nm 598 nm 12 646 nm 565 nm 6 F 11/2 6 F 9/2 6 F 6 7/2 F 5/2 6 6 6 F H F 5/2 15/2 3/2 6 H 11/2 8 4 6 H 488 nm 9/2 6 H 7/2 6 H 5/2 H7/2 598 nm Intensity (a.u.) Energy (103 cm-1) 16 6 4 6 G5/2 4 G5/2 H9/2 646 nm 6 H5/2 565 nm 4 G5/2 6 H11/2 707 nm 500 550 600 650 700 750 800 Wavelength (nm) Write all the term symbols for Samarium ion in your lab report