Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Geometry A 2.1A Inductive Reasoning and Conjecture ASSIGNMENT Name_______________________ Hour ____ Date ______________ 1. Suppose 1 and 2 form a linear pair. What conjecture(s) can you make from this information? (Choose all correct answers.) A. 1 and 2 are supplementary. B. 1 and 2 are complementary. C. 1 and 2 are adjacent. D. 1 and 2 are vertical angles. 2. Suppose M is the midpoint of AB. What conjecture(s) can you make from this information? (Choose all correct answers). A. AM + AB = MB B. AB = 2(AM) C. AM = MB D. AB = MB 3. Given: A and B are supplementary. Conjecture: mA = 90 and mB = 90. Which one of the following is a counterexample to the conjecture? A. mA = 30 and mB = 60 B. mA = 45 and mB = 45 C. mA = 80 and mB = 100 D. None of the above statements is a counterexample because the conjecture is true. For #4-7, show that each conjecture is false by finding a counterexample. The counterexample can be displayed as a drawing or a statement. 4. Given: 1 and 2 form a linear pair. 5. Given: AB , BC , and AC are congruent. Conjecture: 1 2 Conjecture: A, B, and C are collinear. Counterexample: Counterexample: 6. Given: 3 lines a, b, and c lie in the same plane. 7. Given: 2 acute angles Conjecture: The lines intersect at one point. Counterexample: Conjecture: The sum of their measures equals the measure of an obtuse angle. Counterexample: Geometry A 2.1B Inductive Reasoning and Conjecture Name _______________________ ASSIGNMENT Hour ____ Date ______________ Complete each proof. 1. Given: -6x – 7 = 41 Prove: x = -8 Statements Reasons -6x – 7 = 41 1. 2. -6x – 7 = 41 +7 +7 2. 3. -6x = 48 3. 1. 4. 6 x 48 6 6 4. 5. x = -8 2. 5. Given: 4x + 8 = x + 2 Prove: x = -2 Statements Reasons 1. 1. 2. 4x + 8 = x + 2 –x –x 2. 3. 3x + 8 = 2 3. Substitution Property 4. 4. Subtraction Property 5. 5. Substitution Property 6. 3x 6 3 3 6. 7. Substitution Property x5 7 2 Prove: x = 9 3. 1. Given: x5 7 2 2. (2) Statements Reasons 1. x5 7(2) 2 2. 3. x + 5 = 14 3. 4. x + 5 = 14 –5 –5 4. 5. x = 9 5. For #4-10, select the property that justifies each statement. Write the property on the line provided. reflexive property symmetric property transitive property subtraction property multiplication property addition property division property distributive property substitution property 4. If 5x = 15, then 5x + 3 = 15 + 3 _______________________________ 5. 2(y – 5) = 2(y) – 2(5) ________________________________ 6. If 6n = 42, then 7. If 8c = 32, then 32 = 8c ________________________________ 8. 17e = 17e ________________________________ 9. If y = 5 and 5 = 2n, then y = 2n ________________________________ 10. If 4m = 15, then 2(4m) = 2(15) _____________________________ 6n 42 ________________________________ 6 6 Geometry A 2.2 Geometric Proof with Congruence ASSIGNMENT Name _______________________ Hour ____ Date ______________ For #1-15, select the property, definition, or theorem from the box below that justifies each statement. Write the property, definition, or theorem on the line provided. reflexive property symmetric property transitive property addition property subtraction property multiplication property division property substitution property distributive property midpoint theorem definition of a midpoint definition of an angle bisector vertical angles theorem 1. If m1 = m2, then m2 = m1. ______________________________________ 2. If m1 = 90o and m2 = m1, then m2 = 90o. ____________________________________ 3. If AB = RS and RS = WY, then AB = WY. ____________________________________ 4. If AB = CD, then 3AB = 3CD. ____________________________________ 5. If m1 + m2 = 110o and m2 = m3, then m1 + m3 = 110o. ______________________ 6. RS = RS _________________________________ 7. If AB = RS, then AB + 5 = RS + 5. ____________________________________ 8. If m4 m5 and m5 m6 , then m4 m6 . _______________________________ 9. If 4x = 8, then 4x – 2 = 8 – 2. _______________________________ 10. If 80o = mA , then mA = 80o. _____________________________ 11. If DE GH and GH JK , then DE JK . ________________________________ 12. If E is the midpoint of XY , then XE EY . ________________________________ 13. If JL bisects AJC , then AJL CJL . __________________________________ 14. If m3 m4 , then 15. 6(x – 7) = 6(x) – 6(7) ________________________________ 17. Complete the following proof. Given: C is the midpoint of BD . D is the midpoint of CE . Prove: m3 m4 . _________________________________ 10 10 B C D E BC DE Statements 1. C is the midpoint of BD . 1. Reasons 2. D is the midpoint of CE . 2. 3. BC CD 3. 4. CD DE 4. 5. BC DE 5. C B A 18. N Given: AC MN Prove: AB BC MN Statements AC MN AC AB BC MN AB BC AB BC MN M Reasons 19. Given: 1 and 3 are vertical angles m1 3x 5 m3 2x 8 1 2 4 Prove: m1 14 Statements 1 and 3 are vertical angles m1 m3 m1 3x 5 , m3 2x 8 3x 5 2x 8 3x 5 5 2x 8 5 3x 2x 3 3x 2x 2x 2x 3 x3 m1 3x 5 m1 3(3) 5 m1 14 Reasons 3 Geometry A 2.3 Geometric Proofs with Addition reflexive property symmetric property transitive property addition property segment addition postulate supplement theorem ASSIGNMENT subtraction property multiplication property division property substitution property angle addition postulate vertical angles theorem Name _______________________ Hour ____ Date ______________ distributive property midpoint theorem definition of a midpoint definition of an angle bisector complement theorem For #1-21, state the property, definition, theorem, or postulate that justifies each statement. 1. QA = QA. _______________________________ 2. If AB BC and BC CE , then AB CE . _____________________________________ 3. If Q is between P and R, then PQ + QR = PR. ___________________________________ 4. If EF + GH = 14 and GH = 8, then EF + 8 = 14. _________________________________ 5. If MN PQ , then PQ MN . _____________________________ 6. If m7 m8 85o and m8 41o , then m7 41o 85o . __________________________ 7. If R is the midpoint of QT , then QR RT . _______________________________ 8. If m1 = m2, then m1 + 30 = m2 + 30. ______________________________________ 9. If m1 = 23 and m2 = m1, then m2 = 23. ____________________________________ 10. If B is between C and D, then CB + BD = CD. ____________________________________ 11. If AB = CD, then CD AB . ____________________________________ 12. If m1 + m2 = 110 and m2 = m3, then m1 + m3 = 110.__________________________ 13. If RS = ST, then RS + VW = ST + VW _________________________________ 14. If JL bisects AJC , then AJL CJL . ____________________________________ 15. If m4 = m5 and m5 = m6, then m4 = m6. _______________________________ 16. If 5x = 30, then 17. If 100 = mB, then mB = 100. _____________________________ 18. If DE = GH and GH = JK, then DE = JK. ________________________________ 19. If X is the midpoint of BC , then BX CX . ________________________________ 20. 7(x + 3) = 7x + 21 __________________________________ 21. If two angles form a linear pair, then the sum of those two angles will be 180 degrees. 5 x 30 . _______________________________ 5 5 _____________________________ 22. If B is in the interior of ACD , then mACB mBCD mACD . ______________________ 23. If two angles form a right angle, then the sum of their angles will be 90 degrees. ______________________________ 24. Complete the proof below: Given: SU = LR, TU = LN Prove: ST = NR Statements 1. SU = LR 1. 2. TU = LN 2. 3. ST + TU = SU 3. 4. LN + NR = LR 4. 5. ST + TU = LN + NR 5. 6. ST + LN = LN + NR 6. 7. ST + LN – LN = LN + NR – LN 8. ST = NR 25. Reasons 7. 8. Complete the proof below: C Given: ABC DBE Prove: ABD CBE 1. 2. ABC CBD ABD 2. 3. DBE CBD ABD 3. 4. DBE CBD CBE 4. 5. ABD CBE 5. E B Statements 1. ABC DBE D A Reasons 2.1A Inductive Reasoning and Conjecture 1. A and C 2. B and C 3. G 4. Possible answer: 1 = 110o and 2 = 70o 5. Possible answer: create an equilateral triangle out of the three points and label the corners A, B, and C. That would make three congruent segments that are not all on the same line. 6. Possible answer: just make any two of the lines parallel, but still on the same plane. 7. Possible answer: make both angles 30 degrees. That only adds to 60 degrees, which is acute. 2.1B Inductive Reasoning and Conjecture Complete each proof. 1. Given: -6x – 7 = 41 Prove: x = -8 Statements 1. -6x – 7 = 41 Reasons 1. Given 2. -6x – 7 = 41 +7 +7 3. -6x = 48 2. Addition 6 x 48 6 6 5. x = -8 4. Division 3. Substitution 4. 2. 5. Substitution Given: 4x + 8 = x + 2 Prove: x = -2 Statements Reasons 1. 4x + 8 = x + 2 1. Given 2. 4x + 8 = x + 2 –x –x 2. Subtraction Property 3. 3x + 8 = 2 3. Substitution Property 4. 3x + 8 = 2 - 8 -8 5. 3x = -6 4. Subtraction Property 3x 6 3 3 7. x = -2 6. Division Property 6. 5. Substitution Property 7. Substitution Property 3. x5 7 2 Prove: x = 9 Given: x5 7 2 x5 7(2) 2. (2) 2 3. x + 5 = 14 Statements 1. 4. x + 5 = 14 –5 –5 5. x = 9 4. 5. 6. 7. 8. 9. 10. Reasons 1. Given 2. Multiplication 3. Substitution 4. Subtraction 5. Substitution Addition Property Distributive Property Division Property Symmetric Property Reflexive Property Transitive Property Multiplication Property Geometry A 2.2 Geometric Proof with Congruence 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. Symmetric Property Transitive Property Transitive Property Multiplication Property Substitution Reflexive Property Addition Property Transitive Property Subtraction Property Symmetric Property Transitive Property Midpoint Theorem Definition of Angle Bisector Division Property Distributive Property 16. Complete the following proof. Given: C is the midpoint of BD . D is the midpoint of CE . Prove: B C D E BC DE Statements 1. C is the midpoint of BD . 1. Given Reasons 2. D is the midpoint of CE . 2. Given 3. BC CD 3. Midpoint Theorem 4. CD DE 4. Midpoint Theorem 5. BC DE 5. Transitive Property C B A 17. N Given: AC MN M Prove: AB BC MN Statements Reasons AC MN Given AC AB BC Segment Addition Postulate MN AB BC Substitution AB BC MN Symmetric Property 18. Given: 1 and 3 are vertical angles m1 3x 5 m3 2x 8 1 2 4 Prove: m1 14 Statements 1 and 3 are vertical angles m1 m3 m1 3x 5 , m3 2x 8 Reasons Given Vertical Angle Theorem Given 3x 5 2x 8 Substitution 3x 5 5 2x 8 5 Subtraction 3x 2x 3 Substitution 3x 2x 2x 2x 3 x3 Subtraction Substitution m1 3x 5 Given m1 3(3) 5 Substitution m1 14 Substitution 3 Geometry A 2.3 Geometric Proofs with Addition 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. Reflexive Property Transitive Property Segment Addition Postulate Substitution Symmetric Property Substitution Midpoint Theorem Addition Transitive Property Segment Addition Postulate Symmetric Property Substitution Addition Property Definition of an Angle Bisector Transitive Property Division Property Symmetric Property Transitive Property Midpoint Theorem Distributive Property Supplement Theorem Angle Addition Postulate Complement Theorem 24. Complete the proof below: Given: SU = LR, TU = LN Prove: ST = NR Statements Reasons 1. SU = LR 1. Given 2. TU = LN 2. Given 3. ST + TU = SU 3. Segment Addition Postulate 4. LN + NR = LR 4. Segment Addition Postulate 5. ST + TU = LN + NR 5. Substitution 6. ST + LN = LN + NR 6. Substitution 7. ST + LN – LN = LN + NR – LN 8. ST = NR 7. Subtraction 8. Substitution 25. Complete the proof below: C Given: ABC DBE Prove: ABD CBE D A E B Statements 1. ABC DBE 1. Given 2. ABC CBD ABD 2. Angle Addition Postulate 3. DBE CBD ABD 3. Substitution 4. DBE CBD CBE 4. Angle Addition Postulate 5. ABD CBE 5. Substitution Reasons