Download Ch1-Complex Algebra - My FIT (my.fit.edu)

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Complex Algebra Review
Dr. V. Këpuska
Complex Algebra Elements
 Definitions:
j  1
R : Set of all Real Numbers
Ι : Set of all Imaginary Numbers
C : Set of all Complex Numbers
If x,y  R then z  x  jy

C
Cartezian form
of a complex
number

Note: Real numbers can be thought of as complex numbers with imaginary
part equal to zero.
3 May 2017
Veton Këpuska
2
Complex Algebra Elements
If x  0  z  jy  I
If y  0  z  x  R
If z  x  jy then we define
x  Rez  Real part of z
y  Imz Imaginary part of z
3 May 2017
Veton Këpuska
3
Euler’s Identity
e
j
 cos   j sin 
j
 j
e e
cos  
j
e  cos   j sin 
2

j
 j
 j
e e
e  cos   j sin 
sin  
2j
3 May 2017
Veton Këpuska
4
Polar Form of Complex Numbers
z  re

j
r R
r  0
  (- ,  ] radians
z r
Magnitude of z
arg z  z  
Angle (or argument) of z
Magnitude of a complex number z is a generalization of the absolute value
function/operator for real numbers. It is buy definition always non-negative.
3 May 2017
Veton Këpuska
5
Polar Form of Complex Numbers
 Conversion between polar and
rectangular (Cartesian) forms.
z  re j  x  jy
r cos   jsin    x  jy
rcos   jrsin    x  jy
r  x2  y2 
 x  rcos  



 
1  y  
 y  rsin     tan  
 x 

 For z=0+j0; called “complex zero” one can not define
arg(0+j0). Why?
3 May 2017
Veton Këpuska
6
Geometric Representation of
Complex Numbers.
Im
z
Im{z}
Q2
Axis of
Imaginaries
Q1
Axis of
Reals

Re{z}
Q3
Re
Q4
Complex or
Gaussian plane
3 May 2017
Veton Këpuska
7
Geometric Representation of
Complex Numbers.
Condition 1
Q1 or Q2
Arg{z} ≥ 0
Q3 or Q4
Arg{z} ≤ 0
Q1 or Q4
Re{z} ≥ 0
Q2 or Q3
Re{z} ≤ 0
3 May 2017
Condition 2
Im{z} ≥ 0
Im
Q2
Im{z}
Complex
Number in
Quadrant
Im{z} ≤ 0
Axis of
Imaginarie
s z
Q1
Axis of
Reals

Re{z}
Q3
Re
Q4
Complex or
Gaussian plane
Veton Këpuska
8
Example
Im
z1
1
z2
-2
-1
z3
3 May 2017
Re
-1
z1  2
z1  1  j1  {
3
z1 
4
z2  2
z 2  2  j 0  {
z 2  
z3  2
z3  1  j1  {
3
z 3  
4
Veton Këpuska
9
Conjugation of Complex Numbers
 Definition: If z = x+jy ∈ C then z* = x-jy is called
the “Complex Conjugate” number of z.
 Example: If z=rej (polar form) then what is z* also
in polar form?
z  re j  r cos   jr sin   
z   r cos   jr sin  
 r cos   jr sin   
 sin      sin  
 cos    cos 
 r cos    jr sin     re  j
If z=rej then z*=re-j
3 May 2017
Veton Këpuska
10
Geometric Representation of
Conjugate Numbers
 If z=rej then z*=re-j
Im
z
y

x
Re
-
-y
Complex or
Gaussian plane
3 May 2017
Veton Këpuska
z*
11
Complex Number Operations
 Extension of Operations for Real
Numbers
 When adding/subtracting complex
numbers it is most convenient to use
Cartesian form.
 When multiplying/dividing complex
numbers it is most convenient to use
Polar form.
3 May 2017
Veton Këpuska
12
Addition/Subtraction of Complex
Numbers
Let
z1  x1  jy1 , & z 2  x2  jy2
then
z1  z 2   x1  x2   j  y1  y2 
Thus :
Rez1  z 2   Rez1  Rez 2 
Imz1  z 2   Imz1  Imz 2 
3 May 2017
Veton Këpuska
13
Multiplication/Division of Complex
Numbers
Olso
Let
z1 r1e j1  r1  j1  j 2

  e e
j 2
z 2 r2 e
 r2 
z1  r1e j1 & z 2  r2 e j 2
then
z1 z 2  r1e j1 r2 e j 2  r1r2 e j1 e j 2
z1 z 2  r1r2 e j 1  2 
Therefore :
z1  r1  j 1  2 
  e
z 2  r2 
Therefore :
z1 z 2  z1 z 2
z1
z1

z2
z2
 z1 z 2   z1  z 2
3 May 2017
 z1 
   z1  z 2
 z2 
Veton Këpuska
14
Useful Identities
 z ∈ C,  ∈ R & n ∈ Z (integer set)
1)
z  z
 
3)
Re z   Rez
5)
z1 z2   z1 z2
7)
z1  z2   z1  z2
8)
10)
zz   z
Rez   Rez
12)
z   z
14)
zn  z
n
 n
n 
16)
3 May 2017
2
z   z 
z   z
2)
 
Im z    Imz


 z1 
z1
   
z2
 z2 
4)
6)
z 
 
z
Imz   Imz
 0 if   0 
13) z     z  z  

0


if



nz   nz
15)
9)
11)
Veton Këpuska
15
Useful Identities
 Example: z = +j0
 =2 then arg(2)=0
 =-2 then arg(-2)=
Im
j

z
-2
3 May 2017
-1
0
1
Veton Këpuska
2
Re
16
Silly Examples and Tricks
Im
e j 0  cos0   j sin 0   1  j 0  1
e
e
e
j

2
j
3
j
2
e j 2
 
 
 cos   j sin    0  j1  j
2
2
 cos   j sin    1  j 0  1
j
 /2
-1 3/2 0
 3 
 3 
 cos   j sin    0  j  1   j
 2 
 2 
 cos2   j sin 2   1  j 0  1
j  0 j  j  e
j

j 2  jj  e 2 e

3 May 2017
j

2
j

2
 e j  1
j0  1
j1  j
j 2  1
j3   j
Veton Këpuska
1
Re
-j
j4  1
j5  j
j 6  1
j7   j
j8  1
j9  j
j10  1
j11   j
j12  1
j13  j
j14  1
j15   j
17
Division Example
 Division of two complex numbers in
rectangular form.
z1  x1  jy1 , z2  x2  jy2
z1 x1  jy1 x1  jy1  x2  jy2  x1 x2  y1 y2   j x2 y1  x1 y2 



z2 x2  jy2 x2  jy2  x2  jy2 
x 22  y 22

 



z 2
z2
z1 x1 x2  y1 y2  x2 y1  x1 y2 

j 2 2
2
2
z2
x2  y2
x2  y2

 
 
 



z 
Re  1 
 z2 
3 May 2017


z 
Im  1 
 z2 
Veton Këpuska
18
Roots of Unity
 Regard the equation:
zN-1=0, where z ∈ C & N ∈ Z+ (i.e. N>0)
 The fundamental theorem of algebra
(Gauss) states that an Nth degree algebraic
equation has N roots (not necessarily
distinct).
st
3

z

1
z

1
(
1
root ) 
1
 Example:


nd
3
3
(2 root )
 N=3; z -1=0  z =1 ⇒  z 2  ?
rd
z ?

(
3
root
)
 3

3 May 2017
Veton Këpuska
19
Roots of Unity
 zN-1=0 has roots , k=0,1,..,N-1, where
k
e
k

e
 The roots of
j
j
2
N
2k
N
, k  0,1,..., N  1
are called Nth roots of unity.
3 May 2017
Veton Këpuska
20
Roots of Unity
 Verification:
2k
j
N
N


e
  1  0  e j 2k  1  0




Applying Eulers Identity
e j 2k  cos2k   j sin 2k 
cos2k   j sin 2k   1  0
cos2k   j sin 2k   1  j 0
cos2k   1

 wich is true for k  0,1,..., N  1
sin 2k   0
3 May 2017
Veton Këpuska
21
Geometric Representation
N 3
 e
2
2 1
j
3
j
2 2
3
1
e
e
2
j
3
j
4
3
k 0
Im
k 1
k 2
-1
J2
3 May 2017
Veton Këpuska
j1
J1
2/3
 e
1
2 0
3
4/3
0  e
j
J0
0
1
Re
-j1
22
Important Observations
1.
Magnitude of each root are equal to 1. Thus, the Nth roots of
unity are located on the unit circle. (Unit circle is a circle on the
complex plane with radius of 1).
|e
2.
2k
N
| 1, k
The difference in angle between two consecutive roots is 2/N.
k 1  k  
3.
j
k 1

1


 e
k

j
2
N

2
N
 Q.E.D
The roots, if complex, appear in complex-conjugate pairs. For
example for N=3, (J1)*=J2. In general the following property
holds: JN-k=(Jk)*
2  N  k 
2N
2k
2k
2k
2k *
j
j
j
j
j
j


*
 N  k  e N  e N e N  e j 2 e N  1e N   e N   k 


 
 N  k  k
*
 
*
For N  3 & k  1  31  2  1  2  *
3 May 2017
Veton Këpuska
23
Related documents