Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Aim: What theorems apply to isosceles and equilateral triangles? K Do Now: Given: AKC is isosceles with KA KC KB bisects AKC A Prove: A C Statements B C Reasons 1) KA KC 2) KB bisects AKC 1) Given 2) Given 3) AKB CKB 3) Def. angle bisector 4) KB KB 5) AKB CKB 4) Reflexive Postulate 5) SAS SAS 6) A C 6) Corr. parts of ' s are1 Theorem : Theorem: Isosceles Triangle The Base angles of an isosceles triangle are congruent. E T P Z G Q V D M Corollary : The bisector of the vertex angle of an isosceles triangle bisects the base. Corollary : The bisector of the vertex angle of an isosceles triangle is perpendicular to the base. x In other words: The median, altitude and angle bisector from the vertex of an isosceles triangle are all the same segment. Equilateral Triangles Corollary : Every equilateral triangle is equiangular. B B B Or A A C C Or A A B B C A B C C A B C C Ex: Isosceles Triangles If the following pairs of segments are congruent, which angles are congruent. L 1) LD LK Ans: D K 2) QL QT Ans : QTL QLT 3) QT FT Ans : TQF TFQ 4) FL TL Ans : LFT LTF Q D F T K Algebra w/Isosceles Triangles Isosceles ABC has AB AC. If AB 8 x 8, AC 6 x 38, and BC 3x 24 determine AB, AC and BC. V Ex: Proof w/Isosceles Triangle Given: Isosceles VRK with VR VK M is the midpoint of RK TMR AMK Prove: MT MA Statements A T R M K Reasons 1) VR VK 2) R K 1) Given 2) Base 's of isosc. 's are . 3) M is the midpoint of RK 3) Given 4) MR MK 5) TMR AMK TMR AMK 7) MT MA 6) 4) Def. Of midpoint 5) Given 6) ASA ASA 7) Corr. parts of ' s are 6 Geometry Lesson: Isosceles and Equilateral Triangle Theorems D Proofs w/Isosceles Triangles 1) Given: Isosceles RDV with RD RV Isosceles TDV with TD TV Prove: RDT RVT T R M V 2) Given: Isosceles MGD with MG MD y GHTD , x y Prove: MHT is isosceles G H 3) Given: Isosceles ALE with AL AE QL NE , PQ AL, PN AE Prove: QPL NPE x D T A Q L N P E 7