Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
PHY 770 -- Statistical Mechanics 11 AM-12:15 PM & 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth (Olin 300) Course Webpage: http://www.wfu.edu/~natalie/s14phy770 Lecture 7 & 8 -- Appendix A & Chapter 2 Introduction to Probability and Its Role in Statistical Physics 1. 2. 3. 4. 2/6/2014 Probability distribution functions Central limit theorem Liouville theorem and its quantum equivalent Relationship between entropy and notions from probability theory PHY 770 Spring 2014 -- Lectures 7 & 8 1 2/6/2014 PHY 770 Spring 2014 -- Lectures 7 & 8 2 Some ideas from probability theory Notation - Random variable : X Possible value of X : x Probability of outcome x : PX x Properties of probability function Discrete case; x xi PX xi 0 i 1,2,....N N P x 1 i 1 2/6/2014 X i PHY 770 Spring 2014 -- Lectures 7 & 8 3 Some ideas from probability theory -- continued N Average value : X xi PX xi i 1 N Moment value : X n xi PX xi n i 1 Standard diviation : σ X X 2 X 1 2 For a continuous variable x where x : PX x 0 P x dx 1 X Xn n x PX x dx 2/6/2014 PHY 770 Spring 2014 -- Lectures 7 & 8 4 Some ideas from probability theory -- continued Clever use of Fourier transfroms; the characteristic function : n 1 X k eikx eikx PX x dx ik n Xn n! Note that, using the inverse Fourier transform : 1 PX x 2 ikx e X k dk Other useful relationships : 1 d n X k X n lim i k 0 dk n Cummulants : Cn X n ik n X k exp Cn X n 1 n! C1 X X C3 X X 2/6/2014 C2 X X 2 X 3 3 X 2 X 2 X 2 3 PHY 770 Spring 2014 -- Lectures 7 & 8 5 Some ideas from probability theory -- continued Example : 2 1 x2 PX x 0 X k e ikx for x 1 otherwise ikx e PX x dx 2 1 ikx 2 e 1 x dx 1 2 J1 k k Using the assending series expansion : 2 1 k2 1 k4 X k J1 k 1 k 4 2! 8 4! From : X k e ikx n 1 ikx e PX x dx ik n Xn n! X X 3 X 5 .... 0 X 2/6/2014 2 1 4 X 4 1 8 PHY 770 Spring 2014 -- Lectures 7 & 8 6 Some ideas from probability theory – continued Example: Consider a random walk in one dimension for which the walker at each step is equally likely to take a step with displacement anywhere in the interval d-a≤x≤d+a (a<d). Each step is independent of the others. After N steps, the displacement of the walker is S=X1+X2+….XN What is the average <S> and standard deviation sS? 1 PX x 2a 0 for d a x d a otherwise For a single step : X k e ikx 2/6/2014 1 ikx ikd sin ka e ikx PX x dx e dx e 2a d a ka PHY 770 Spring 2014 -- Lectures 7 & 8 d a 7 Some ideas from probability theory – continued Characteristic function for a single step : sin ka X k eikx eikd ka Characteristic function for S ( N steps) : S k X k N eikd sin ka ka N Expansion in powers of k : sin ka 1 2 2 2 1 2 S k eikd 1 iNd k Na N d k ... ka 2 6 1 S Nd S 2 Na 2 N 2 d 2 3 N 2 sS S2 S a 3 N 2/6/2014 PHY 770 Spring 2014 -- Lectures 7 & 8 8 Some ideas from probability theory – continued Typical probability functions Binomial distribution Gaussian distribution Poisson distribution Binomial distribution Consider a process with 2 outcomes: 0 with probability p 1 with probability q=1-p For N “trials” of the process, n0 denotes the number outcomes 0 and n1 denotes the number of outcomes 1, with N=n0+n1. PN n1 2/6/2014 N! p n1 q N n1 n1! N n1 ! PHY 770 Spring 2014 -- Lectures 7 & 8 9 Binomial distribution continued: PN n1 N! p n1 q N n1 n1! N n1 ! Note that : N N PN n1 N! N p n1 q N n1 p q 1 n1 0 n1! N n1 ! n1 0 Can show that : n1 Np n1 2 Np Npq 2 s N Npq 2/6/2014 PHY 770 Spring 2014 -- Lectures 7 & 8 10 Example: Dice throws On average, how many times must a die be thrown until “4” appears? Let p probability of getting 4 on one throw ( p 1 ) 6 Let q probability of not getting 4 on one throw Probability of first getting 4 on nth throw : Pn pq n 1 d n Mean # of throws : m npq p q dq n 0 n 1 d 1 1 1 p p 2 dq 1-q 1 q p 2/6/2014 n 1 PHY 770 Spring 2014 -- Lectures 7 & 8 11 Gaussian distribution Consider the binomial distribution in the limit of large N and large pN: N! PN n p n q N n n! N n ! n Np n Stirling approximation : n! 2n e n n n 2 n n 1 PN n PN n exp exp 2 2 Npq 2 s 2 s 2/6/2014 PHY 770 Spring 2014 -- Lectures 7 & 8 2 12 Poisson distribution Consider the binomial distribution in the limit of large N and pN =a<< N: PN n N! p n q N n n! N n ! n Np a a n e a PN n n! a n e a a a Note that : e e 1 n! n 0 2/6/2014 PHY 770 Spring 2014 -- Lectures 7 & 8 13 Poisson distribution example Consider a monolayer thin sheet of gold foil as a target for neutron scattering. Assume that the probability that in any given pulse of the beam the probability that the beam will scatter from the gold nuclei is given by the Poisson distribution with a=2. Determine the probability that n=0 and that n=2. a nea PPoisson n n! PPoisson 0 2 0 e 2 0.135 21 e 2 PPoisson 1 0.271 1 22 e 2 PPoisson 2 0.271 2 23 e 2 PPoisson 3 0.180 3! 24 e 2 PPoisson 4 0.090 4! 2/6/2014 PHY 770 Spring 2014 -- Lectures 7 & 8 14 Central limit theorem Consider N independent stochastic variables Xi, i=1,2,..N. What is the distribution of their sum YN=(X1+…XN)/N Characteristic function for YN : Y k dx1.... dx N eik ( x x ... x 1 2 N )/ N PX 1 x1 ....PX N x N X k / N N 1ks 1 2 N 2 1 PY y 2 2/6/2014 2 X 2 ... N k 2s X2 exp N 2N 2 2 sX k -iky exp e dk 2N PHY 770 Spring 2014 -- Lectures 7 & 8 N 2s X2 Ny 2 exp 2 s 2 X 15 Central limit theorem Consider N independent stochastic variables Xi, i=1,2,..N. What is the distribution of their sum YN=(X1+…XN)/N PY y y2 exp 2 2 2s X / N 2s X / N 1 Distribution function for Y is a Gaussian distribution centered at <x> and with variance s X / N 2/6/2014 PHY 770 Spring 2014 -- Lectures 7 & 8 16 Justification of statistical treatment of macroscopic systems Classical mechanics argument ant the Liouville theorem Liouville’s theorem: Imagine a collection of particles obeying the Canonical equations of motion in phase space. Let D denote the " distribution" of particles in phase space : D Dq1 q3 N , p1 p3 N , t Liouville's theorm shows that : dD 0 D is constant in time dt 2/6/2014 PHY 770 Spring 2014 -- Lectures 7 & 8 17 Proof of Liouville’e theorem: v D t v Continuity equation : D vD t Note : in this case, the velocity is the 6 N dimensional vector : v r1 , r2 , rN , p 1 , p 2 , p N We also have a 6 N dimensional gradient : r1 , r2 , rN , p1 , p 2 , p N 2/6/2014 PHY 770 Spring 2014 -- Lectures 7 & 8 18 D vD t 3N q j D p j D p j j 1 q j 3N 3 N q j p j D D q j p j D p j j 1 j 1 q j q j p j 2H 2H q j p j q j p j p j q j q j 2/6/2014 p j 0 PHY 770 Spring 2014 -- Lectures 7 & 8 19 0 3N 3 N q j p j D D D q j p j D t p j j 1 j 1 q j q j p j 3N D D D q j p j t p j j 1 q j D 3 N D D dD q j p j 0 t j 1 q j p j dt 2/6/2014 PHY 770 Spring 2014 -- Lectures 7 & 8 20 Complexity and entropy Microscopic definition of entropy S ( N , E , n) k B lnNN E , n In this case, we have N particles having a total energy E and a macroscopic parameter n. NN E , n denotes the multiplicity of microscopic states having the same parameters. Each of these states are assumed to equally likely to occur. 2/6/2014 PHY 770 Spring 2014 -- Lectures 7 & 8 21 Example: Suppose you have N spin-1/2 particles. How many microscopic states does the system have? For N=10: ↑↓ ↑↑↓ ↓↓↑↓↑ For N=100 total = 210=1024 total= 2100=1030 Now, consider N spin-1/2 particles with n ↑. N! NN n n! N n ! 2/6/2014 PHY 770 Spring 2014 -- Lectures 7 & 8 22 Spin-1/2 system continued Recall the binomial distribution : for fixed a and b a b N N N! a N nb n n 0 n! N n ! N N! N 1 1 2 N n 0 n! N n ! Fraction of microscopic states for this systerm? n 1 1 N! N! 1 1 FN n N NN n N 2 2 n! N n ! n! N n ! 2 2 2/6/2014 PHY 770 Spring 2014 -- Lectures 7 & 8 N n 23 Spin-1/2 system continued Fraction of microscopic states for this systerm? n 1 1 N! N! 1 1 FN n N NN n N 2 2 n! N n ! n! N n ! 2 2 For N N n 2 n n 1 FN n exp 2 2 s 2s N N where n N / 2 and s N N / 2 2/6/2014 PHY 770 Spring 2014 -- Lectures 7 & 8 24 Spin-1/2 system continued Entropy for this system : N! NN n n! N n ! N! S ( N , n) k B ln NN n k B ln n! N n ! Stirling approximation : N ! 2N N N e N ln N ! N ln N N NN S ( N , n) k B ln NN n k B ln n N n n N n 2/6/2014 PHY 770 Spring 2014 -- Lectures 7 & 8 25 Spin-1/2 system continued N! S ( N , n) k B ln NN n k B ln n! N n ! NN S ( N , n) k B ln NN n k B ln n N n n N n N N Nk ln 2 S ( N , n ) k B ln B n n N n N n 2/6/2014 PHY 770 Spring 2014 -- Lectures 7 & 8 26 Relationship between probability function and entropy Fraction of microscopic states for systerm 1 1 FN n PN n NN n expS ( N , n) / k B NN NN 2/6/2014 PHY 770 Spring 2014 -- Lectures 7 & 8 27 Spin-1/2 system continued – effects of Magnetic field ↓ mH ↑ -mH H=0 H>0 E m n H m N n H mNH 2 m n H E N Note that : n 2 2 mH 2/6/2014 PHY 770 Spring 2014 -- Lectures 7 & 8 28 Spin-1/2 system continued – effects of Magnetic field -- continued Approximate entropy for this case (fixed E , H ); Stirling approximation : N E N E ln S ( N , E , H ) k B N ln N k B 2 2 m H 2 2 m H N E N E ln k B 2 2 mH 2 2 m H 2/6/2014 PHY 770 Spring 2014 -- Lectures 7 & 8 29 Spin-1/2 system continued – effects of Magnetic field -- continued Big leap: Assume the microscopic entropy function IS the same as the macroscopic entropy found in classical thermodynamics S 1 E H , N T N E N E ln S ( N , E , H ) k B N ln N k B 2 2 mH 2 2 mH N E N E ln k B 2 2 m H 2 2 m H S E H , N 2/6/2014 E N 1 kB 2 mH ln E T 2 mH N 2 mH PHY 770 Spring 2014 -- Lectures 7 & 8 30