Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
ME 481 - H06
Name ________________________
Use generalized coordinates {q} and joint constraints {} for the slider crank shown below.
x 2
y
2 r
2 2
2
x 3 r
q y 3 3
3
3 r4
x 4
4
y 4
4
r2 A r1 A
B
B
r3 r2
C
C
r4 r3
4
y4
2 2 t
B
G3
3
2
AB = R = 0.985 inch
BC = L = 4.33 inch
BG3 = 1.1 inch
G2 is at A2 (balanced crank)
G3 is on centerline of link 3
G4 is at C4 (simple piston model)
x2 axis along centerline of link 2
x3 axis along centerline of link 3
2 = 1000 rpm CCW constant
C
4
A
B3
y3
x3
B2
y2 x2
C3
G3
y4
A2
y1
A1
s 2 ' A
0
0
0
s 4 ' C
0
C4
x4
x1
s 2 ' B
r1 A
R
0
0
0
example for B3
BLUEPRINT INFORMATION
BG 3
L BG 3
s 3 ' B
s 3 ' C
0
0
r3 B r3 A 3 s 3 ' B
cos 3
A 3
sin 3
sin 3
cos 3
ME 481 - H06
Name ________________________
1) Evaluate residuals {} for rough estimates of generalized coordinates {q} at t = 0.005 sec
shown below. Comment on the relative precision of {} versus {q}.
0 inch
_______________
_______________
0 inch
0.4363 rad (25)
_______________
2.0 inch
_______________
q
_______________
0.5 inch
0.1745 rad (10)
_______________
5.0 inch
_______________
0 inch
_______________
_______________
0 rad (0)
2) Use geometric equations to determine better estimates for {q} at time t = 0.005 sec. Then
evaluate new residuals. Comment on precision of {q} and {} between parts 1) and 2).
0 inch
_______________
_______________
0 inch
2 t __________
_______________
_______________
_______________
q _______________
_______________
_______________
_______________
_______________
_______________
0 inch
_______________
_______________
0 rad (0)
3) Evaluate the Jacobian q for your better estimate of {q} at t = 0.005 sec.
q
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
______
ME 481 - H06
Name ________________________
4) Use your code to perform a Newton-Raphson position solution at t = 0.010 sec. Calculate
piston position x4 and determinant of the Jacobian. Validate with geometric equations.
x4 (Newton-Raphson) ____________
det q ____________
x4 (geometric) ____________
5) Compute piston velocity x 4 and acceleration x 4 at t = 0.010 sec using a matrix solution with
right-hand-side (RHS) vectors and . Validate with geometric equations.
x 4 (matrix) ____________
x 4 (geometric) ____________
x 4 (matrix) ____________
x 4 (geometric) ____________
EXTRA CREDIT
Place a loop around your solution for part 5) using 0 ≤ t ≤ 0.06 sec and provide MATLAB graphs
for piston position x 4 , velocity x 4 and acceleration x 4 as functions of crank angle 2 . Validate
using results from geometric equations on the same MATLAB graphs.
EXTRA EXTRA CREDIT
Modify your slider crank code for part 5) to analyze the four bar in Notes_04_05. This should
only require modifying the last three rows in your constraint vector, your Jacobian matrix and
your acceleration RHS vector.
use
2 = 65°
2 = 10 rad/sec CW
= 2 rad/sec2 CCW
2
validation
3 = 13.151°
3 = _______________
= +7.0627 rad/sec2
3
4 = -65.173°
4 = -5.3533 rad/sec
= _______________
4