Download download

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Matakuliah
: I0014 / Biostatistika
Tahun
: 2008
Pendugaan Parameter (I)
Pertemuan 9
Learning Outcomes
Pada akhir pertemuan ini, diharapkan mahasiswa
akan mampu:
• Mahasiswa dapat menjelaskan konsep pendugaan
parameter populasi (C2)
Bina Nusantara
Outline Materi
• Sebaran penarikan contoh
• Pendugaan titik
• Pendugaan selang
Bina Nusantara
POPULASI DAN SAMPEL
• POPULASI (N)
parameter
 , ,
2
• Pengambilan sampel
(sampling)
statistik
• SAMPEL (n)
Bina Nusantara
2
x, s , s
BAGAIMANA SAMPLING ?
• Random
• Non-random
Bagaimana Me-random ??
• Lotere / undian
• Tabel / angka acak
• Alat elektronik
Bina Nusantara
Penarikan Contoh (Sampling)
•
Penarikan Contoh Acak
1. SIMPLE RANDOM SAMPLING
2. SYSTEMATIC RANDOM SAMPLING
3. STRATIFIED RANDOM SAMPLING
4. CLUSTER RANDOM SAMPLING
•
Penarikan Contoh Non Acak
1. ACCIDENTAL SAMPLING
2. PURPOSIVE SAMPLING
3. EQUOTA SAMPLING
4. SNOWBAL SAMPLING
Bina Nusantara
Penarikan Contoh
• Jika n diambil secara acak dari N dengan
pengembalian,
maka ada
kemungkinan contoh
Nn
• Jika n diambil secara acak dari N tanpa
N 
pengembalian,
maka ada
kemungkinan contoh
 
n
• Oleh karena itu, suatu contoh berukuran n yang
diambil dari N mempunyai statistik contoh yang
tidak sama
Bina Nusantara
SIFAT SAMPEL
• Rata-rata sampel = Rata-rata populasi
• Ukuran penyebaran rata-rata sampel (mis: s
dan dq) semakin menurun dengan
meningkatnya ukuran contoh
Bina Nusantara
Sebaran Rata-rata Sampel
• Sampling tanpa pengembalian
N n s

N
n
2
s
2
x
• Sampling dengan pengembalian atau N >> n
2
s
Bina Nusantara
2
x
s

n
• Rata-rata sampel
• Sampling tanpa
pengembalian
• Sampling dengan
pengembalian
atau N >> n
Bina Nusantara
x    E( X )
 x2
N n2

N 1 n
 
2
x

2
n
Penduga Titik dan Sifat
Penduga
An estimator of a population parameter is a sample statistic used to
estimate the parameter. The most commonly-used estimator of the:
Population Parameter
Sample Statistic
Mean ()
is the
Mean (X)
Variance (2)
is the
Variance (s2)
Standard Deviation ()
is the
Standard Deviation (s)
Proportion (p)
is the
Proportion ( p )
• Desirable properties of estimators include:
–
–
–
–
Bina Nusantara
Unbiasedness
Efficiency
Consistency
Sufficiency
Tidak Bias
An estimator is said to be unbiased if its expected value is equal to
the population parameter it estimates.
For example, E(X)=so the sample mean is an unbiased estimator of
the population mean. Unbiasedness is an average or long-run
property. The mean of any single sample will probably not equal the
population mean, but the average of the means of repeated
independent samples from a population will equal the population
mean.
Any systematic deviation of the estimator from the population
parameter of interest is called a bias.
Bina Nusantara
{
Penduga Tak-bias dan Bias
Bias
An unbiased estimator is on
target on average.
Bina Nusantara
A biased estimator is
off target on average.
Efisiensi
An estimator is efficient if it has a relatively small variance (and
standard deviation).
An efficient estimator is,
on average, closer to the
parameter being estimated..
Bina Nusantara
An inefficient estimator is, on
average, farther from the
parameter being estimated.
Konsistensi dan Kecukupan
An estimator is said to be consistent if its probability of being close
to the parameter it estimates increases as the sample size increases.
Consistency
n = 10
n = 100
An estimator is said to be sufficient if it contains all the information
in the data about the parameter it estimates.
Bina Nusantara
Penutup
• Sampai saat ini Anda telah mempelajari
sebaran penarikan contoh dan pendugaan
titik dan selang
• Untuk dapat lebih memahami penggunaan
pendugaan tersebut, cobalah Anda pelajari
materi penunjang, dan mengerjakan latihan
Bina Nusantara
Related documents