Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Two-Port Networks One-Port Networks • Definitions • Impedance Parameters + • Admittance Parameters v • Hybrid Parameters - • Transmission Parameters i1 One-Port Network i'1 • A pair of terminals at which a signal (voltage or current) may enter or leave is called a port • Cascaded Two-Port Networks • Examples • A network having only one such pair of terminals is called a one-port network • Applications • No connections may be made to any other nodes internal to the network • By KCL, we therefore have i1 = i1 • We discussed in ECE 221 how one-port networks may be modeled by their Thévenin or Norton equivalents J. McNames Portland State University ECE 222 Two-Port Networks Ver. 1.11 1 J. McNames Two-Port Networks: Definitions & Requirements + i1 i2 Two-Port Network v1 - i'1 I1(s) + V1(s) - ECE 222 Two-Port Networks Ver. 1.11 2 + Two-Port Network - Ver. 1.11 V2(s) - • If the network contains dependent sources, one or more of the equivalent resistors may be negative • The analysis methods we will discuss require the following conditions be met 1. Linearity 2. No independent sources inside the network 3. No stored energy inside the network (zero initial conditions) 4. i1 = i1 and i2 = i2 Portland State University Two-Port Networks I2(s) + • Two-port networks are used to describe the relationship between a pair of terminals J. McNames ECE 222 Two-Port Networks: Defining Equations v2 i'2 Portland State University • Generally, the network is analyzed in the s domain • Each two-port has exactly two governing equations that can be written in terms of any pair of network variables • Like Thévenin and Norton equivalents of one-ports, once we know a set of governing equations we no longer need to know what is inside the box 3 J. McNames Portland State University ECE 222 Two-Port Networks Ver. 1.11 4 Impedance Parameters + I1(s) Impedance Parameter Measurements + Two-Port Network V1(s) V2(s) - + I2(s) I1(s) V1 z11 = V2 z21 V2 = z21 I1 + z22 I2 z12 z22 I1 I2 V1 V2 • We can also calculate the impedance parameters after making two sets of measurements Two-Port Networks Ver. 1.11 5 J. McNames Impedance Parameter Measurements Continued + V1(s) I2(s) I1(s) z11 z21 If the left port is an open circuit (I1 = 0), then we can easily solve for the other two impedance parameters: V1 V2 z22 = z12 = I2 I1 =0 I2 I1 =0 ECE 222 Two-Port Networks Ver. 1.11 6 V1(s) Ver. 1.11 8 + Two-Port Network - = z11 I1 + z12 I2 = z21 I1 + z22 I2 Portland State University Two-Port Networks Impedance Parameter Measurements Summarized - V1 V2 ECE 222 + V2(s) - J. McNames Portland State University + Two-Port Network = z11 I1 + z12 I2 = z21 I1 + z22 I2 If the right port is an open circuit (I2 = 0), then we can easily solve for two of the impedance parameters: V1 V2 z = z11 = 21 I1 I2 =0 I1 I2 =0 • Relationship can be written in terms of the impedance parameters ECE 222 - • Alternatively, if the circuit in the box is known, V1 and V2 can be calculated based on circuit analysis Portland State University V2(s) - • Suppose the currents and voltages can be measured J. McNames V1(s) - V1 = z11 I1 + z12 I2 + Two-Port Network Ver. 1.11 7 J. McNames I2(s) - V1 = I1 I2 =0 V2 = I1 z12 z22 I2 =0 Portland State University V2(s) ECE 222 V1 = I2 I1 =0 V2 = I2 I1 =0 Two-Port Networks Impedance Parameter Equivalent V1(s) 200 Ω I2(s) I1(s) + Example 1: Impedance Parameters z11 z22 z12 I2 z21 I1 - + + 40 Ω I1 I2 V2(s) V1 - + 500 Ω 800 Ω V2 1 kΩ - V1 V2 = z11 I1 + z12 I2 = z21 I1 + z22 I2 - Find the z parameters of the circuit. • Once we know what the impedance parameters are, we can model the behavior of the two-port with an equivalent circuit. • Notice the similarity to Thévenin and Norton equivalents J. McNames Portland State University ECE 222 Two-Port Networks Ver. 1.11 9 J. McNames Example 1: Workspace Portland State University ECE 222 Two-Port Networks Ver. 1.11 10 Example 2: Parameter Conversion I1(s) I2(s) + + Two-Port Network V1(s) V2(s) - - V1 = z11 I1 + z12 I2 V2 = z21 I1 + z22 I2 In general, the two defining equations can be written in terms of any pair of variables. For example, rewrite the defining equations in terms of the voltages V1 and V2 . J. McNames Portland State University ECE 222 Two-Port Networks Ver. 1.11 11 J. McNames Portland State University ECE 222 Two-Port Networks Ver. 1.11 12 Example 2: Workspace J. McNames Portland State University ECE 222 Example 2: Workspace Continued Two-Port Networks Ver. 1.11 13 J. McNames Portland State University Impedance & Admittance Parameters I1(s) V1(s) - Impedance Parameters V2 = z21 I1 + z22 I2 Admittance Parameters I1 = y11 V1 + y12 V2 I2 = y21 V1 + y22 V2 I1 y11 = I2 y21 J. McNames Portland State University V2(s) V1(s) - - ECE 222 z12 z22 y12 y22 Ver. 1.11 14 I2(s) + Hybrid Parameters V1 z11 = V2 z21 V1 = z11 I1 + z12 I2 I1(s) + Two-Port Network Two-Port Networks Hybrid Parameters I2(s) + ECE 222 I1 I2 V1 V2 Two-Port Networks V1 = h11 I1 + h12 V2 I2 = h21 I1 + h22 V2 Inverse Hybrid Parameters I1 = g11 V1 + g12 I2 V2 = g21 V1 + g22 I2 Ver. 1.11 15 J. McNames Portland State University + Two-Port Network V2(s) - V1 h11 = I2 h21 I1 g11 = V2 g21 ECE 222 h12 h22 g12 g22 I1 V2 V1 I2 Two-Port Networks Ver. 1.11 16 Transmission Parameters I1(s) I2(s) + I1(s) + V1(s) Two-Port Network - Transmission Parameters V1 = a11 V2 − a12 I2 V1 a11 = I1 a21 I1 = a21 V2 − a22 I2 Inverse Transmission Parameters V2 = b11 V1 − b12 I1 V2 b11 = I2 b21 I2 = b21 V1 − b22 I1 J. McNames Transmission Parameter Conversion Portland State University ECE 222 b12 a22 b12 b22 + V2(s) V1(s) - - I2(s) V2 −I2 V1 −I1 V2 −I2 =A =B Two-Port Networks V2 −I2 Ver. 1.11 + Two-Port Network V2(s) - • Altogether there are 6 sets of parameters • Each set completely describes the two-port network • Any set of parameters can be converted to any other set • We have seen one example of a conversion • A complete table of conversions is listed in the text (Pg. 933) • You should have a copy of this in your notes for the final 17 J. McNames Example 3: Two-Port Measurements Portland State University ECE 222 Two-Port Networks Ver. 1.11 18 Ver. 1.11 20 Example 3: Workspace The following measurements were taken from a two-port network. Find the transmission parameters. Port 2 Open V1 = 150 cos(4000t) V applied I1 = 25 cos(4000t − 45◦ ) A measured V2 = 1000 cos(4000t + 15◦ ) V measured Port 2 Shorted J. McNames V1 = 30 cos(4000t) V applied I1 = 1.5 cos(4000t + 30◦ ) A measured I2 = 0.25 cos(4000t + 150◦ ) A measured Portland State University ECE 222 Two-Port Networks Ver. 1.11 19 J. McNames Portland State University ECE 222 Two-Port Networks Example 4: Two-Port Analysis Example 4: Workspace 800 Ω i1 40 Ω 800 Ω 160 Ω + + v1 v3 - - 200 Ω i2 16.2 v3 i1 40 Ω i2 160 Ω + + + v2 v1 v3 - - - + 200 Ω 16.2 v3 v2 - Find the hybrid parameters for the circuit shown above. J. McNames Portland State University ECE 222 Two-Port Networks Ver. 1.11 21 J. McNames Portland State University Example 4: Workspace Continued ECE 222 Two-Port Networks Ver. 1.11 22 Example 5: Two-Port Measurements The following measurements were taken from a two-port network. Find the transmission parameters. Port 1 Open Port 1 Shorted V1 = 1 mV I1 = −0.5 µA V2 = 10 V I2 = I2 = 200 µA V2 = Hint: b = b11 b22 − b12 b21 , a11 = a22 = b11b . J. McNames Portland State University ECE 222 Two-Port Networks Ver. 1.11 23 J. McNames Portland State University b22 b , a12 = ECE 222 80 µA 5V b12 b , a21 = b21 b , Two-Port Networks and Ver. 1.11 24 Example 5: Workspace Example 6: Two-Port Analysis i1 R1 R3 v+(t) R4 i2 v-(t) v1(t) C1 + R2 v2(t) - C2 Find an expression for the transfer function, h11 , z11 , g12 , g22 , a11 , and y21 . J. McNames Portland State University ECE 222 Two-Port Networks Ver. 1.11 25 J. McNames Portland State University Example 6: Workspace i1 v1(t) R1 R3 v+(t) R4 v-(t) C1 i1 i2 R1 R3 v1(t) v2(t) v+(t) R4 v-(t) C1 26 Ver. 1.11 28 i2 v2(t) - C2 Portland State University Ver. 1.11 + R2 - J. McNames Two-Port Networks Example 6: Workspace Continued (1) + R2 ECE 222 C2 ECE 222 Two-Port Networks Ver. 1.11 27 J. McNames Portland State University ECE 222 Two-Port Networks Cascaded Two-Port Networks Example 6: Workspace Continued (2) i1 R1 R3 v+(t) R4 v-(t) v1(t) C1 I1(s) i2 + + R2 Two Port Network A V1(s) v2(t) - - I1B (s) I2A (s) + + V2A (s) V1B (s) - - I2(s) + Two Port Network B V2(s) - C2 • Two networks are cascaded when the output of one is the input of the other • Note that V2A = V1B and −I2A = I1B • The transmission parameters take advantage of these properties J. McNames Portland State University ECE 222 Two-Port Networks Ver. 1.11 29 J. McNames Portland State University Cascaded Two-Port Networks I1(s) I2A (s) + Two Port Network A V1(s) - V1 = I1 V2A −I2A a11 a21 = a12 a22 V1B I1B A + V2A (s) V1B (s) - - V2A −I2A V1 = I1 I2(s) Two Port Network B a11 a21 V1B = I1B a11 a21 a12 a22 a12 a22 a11 a21 a12 a22 A I1(s) + + V2(s) V1(s) - - B V2 −I2 B V2 −I2 I2A (s) Two Port Network A Portland State University ECE 222 Ver. 1.11 30 Two-Port Networks V2 = I2 b11 b21 Ver. 1.11 I1B (s) + + V2A (s) V1B (s) - - I2(s) + Two Port Network B V2(s) - The inverse transmission parameters are also convenient for cascaded networks. b12 b22 V1B V2A = −I1B I2A J. McNames Two-Port Networks Cascaded Two-Port Networks Continued I1B (s) + ECE 222 31 J. McNames A V1B −I1B V2 = I2 Portland State University V2A = I2A b11 b21 b12 b22 ECE 222 A b11 b21 b12 b22 b11 b21 b12 b22 B B Two-Port Networks V1 −I1 V1 −I1 Ver. 1.11 32 Cascaded Systems: Two-Port Networks versus H(s) I1(s) + V1(s) - I2A (s) Two Port Network A I1B (s) + + V2A (s) V1B (s) - - I2(s) Two Port Network B + V2(s) - • Two-ports and transfer functions H(s) are closely related • H(s) only relates the input signal to the output signal • Two-ports relate both voltages and currents at each port • You cannot cascade H(s) unless the circuits are active • Two-port networks have no such restriction • Two-ports are used to design passive filters • However, two-ports are more complicated than H(s) J. McNames Portland State University ECE 222 Two-Port Networks Ver. 1.11 33