Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Formulas Angles Circles Sum of the measures of the interior angles of a triangle: 1808 (p. 218) Angle and segments formed by two chords: 1 Sum of the measures of the interior angles of a convex n-gon: (n 2 2) p 1808 (p. 507) Exterior angle of a triangle: m∠ 1 5 m∠ A 1 m∠ B C C D m∠ 1 5 } (m CD 1 m AB ) 2 (p. 681) A EA p EC 5 EB p ED (p. 689) E (p. 219) exterior 1 angle Sum of the measures of the exterior angles of a convex polygon: 3608 (p. 509) C Angle and segments formed by a tangent and a secant: E C C A 2 1 m∠ 2 5 } (m BC 2 m AB ) (p. 681) EB2 5 EA p EC (p. 691) 2 B Right Triangles A Pythagorean Theorem: c 2 5 a2 1 b2 (p. 433) Angle and segments formed by two tangents: E A c b C a Trigonometric ratios: BC sin A 5 } (p. 473) AB AC cos A 5 } (p. 473) AB BC tan A 5 } (p. 466) AC sin 458-458-908 triangle (p. 457) 308-608-908 triangle (p. 459) C C 1 m∠ 3 5 } (m AQB 2 m AB ) (p. 681) EA 5 EB (p. 654) 2 B 3 P B 21 BC } 5 m∠ A (p. 483) AB 21 AC cos Angle and segments formed E by two secants: } 5 m∠ A (p. 483) AB 21 BC tan } 5 m∠ A (p. 483) AC C C 4 B 1 m∠ 4 5 } (m CD 2 m AB ) (p. 681) EA p EC 5 EB p ED (p. 690) 2 C A D Coordinate Geometry 458 x 2 x 608 2x x Given: points A(x1, y1) and B(x2, y 2) 1 2 1 2 Midpoint of } AB 5 } ,} 308 458 1 x 3 x Ratio of sides: } 1: 1 : Ï2 (p. 451) CD AD } y 1y 2 2 2 (p. 16) }} C AB 5 (x2 2 x1)2 1 (y2 2 y1)2 (p. 17) ‹]› rise y2 2 y1 Slope of AB 5 } run 5 } x 2x (p. 171) 2 (p. 449) CD AB CB AB AC BD } 5 } , } 5 }, } 5 } AD CB AD DB AC CD x 1x Ï Ratio of sides: } 1: Ï 3 : 2 n ABC , n ACD , n CBD BD CD 1 Slope-intercept form of a linear equation with slope m and y-intercept b: y 5 mx 1 b (p. 180) A D } 5 }, and CD 5 Ï AD p DB (pp. 359, 452) B Standard equation of a circle with center (h, k) and radius r: (x 2 h)2 1 (y 2 k)2 5 r 2 (p. 699) Taxicab distance AB 5 ⏐x2 2 x1⏐ 1 ⏐y2 2 y1⏐ (p. 198) 922 Student Resources C B B A TABLES 1 Perimeter Surface Area P 5 perimeter, C 5 circumference, s 5 side, l 5 length, w 5 width, a, b, c 5 lengths of the sides of a triangle, r 5 radius B 5 area of a base, P 5 perimeter, C 5 circumference, h 5 height, r 5 radius, l 5 slant height Polygon: P 5 sum of side lengths (p. 49) Square: P 5 4s (p. 49) Rectangle: P 5 2l 1 2w (p. 49) Triangle: P5a1b1c (p. 49) Regular n-gon: P 5 ns Circle: (pp. 49, 765) C 5 2πr Right prism: S 5 2B 1 Ph (p. 804) Right cylinder: S 5 2B 1 Ch 5 2πr 2 1 2πrh (p. 805) 1 Regular pyramid: S 5 B 1 } Pl 1 S5B1} Cl Right cone: 2 5 πr 2 1 πrl (p. 49) C C 3608 mAB Arc length of AB 5 } p 2πr (p. 747) (p. 811) 2 (p. 812) S 5 4πr 2 Sphere: (p. 838) Volume Area V 5 volume, B 5 area of a base, h 5 height, r 5 radius, s 5 side length Cube: V 5 s3 (p. 819) V 5 Bh (p. 820) Square: A 5 s2 (pp. 49, 720) Prism: Rectangle: A 5 lw (pp. 49, 720) Cylinder: V 5 Bh 5 πr 2h (p. 820) Triangle: 1 A5} bh 2 (pp. 49, 721) 1 Pyramid: V 5 } Bh (p. 829) Parallelogram: A 5 bh (p. 721) Trapezoid: 1 A5} h(b1 1 b2) (p. 730) 2 Rhombus: 1 A5} dd 2 1 2 Kite: A5} dd 2 1 2 1 1 } Ï3s2 Equilateral triangle: A 5 } 4 3 (p. 731) Cone: Sphere: 1 1 2 V5} Bh 5 } πr h 3 4 3 V5} πr 3 (p. 829) 3 (p. 840) Miscellaneous } (p. 731) Geometric mean of a and b: Ïa p b (pp. 726, 766) Euler’s Theorem for Polyhedra, F 5 faces, V 5 vertices, E 5 edges: F 1 V 5 E 1 2 (p. 795) (p. 359) Regular polygon: 1 A5} aP (p. 763) Given: similar polygons or similar solids with a scale factor of a : b Circle: A 5 πr 2 (pp. 49, 755) Ratio of perimeters 5 a : b Area of a sector: 2 C mAB A5} p πr 2 360° 2 (p. 756) TABLES A 5 area, s 5 side, b 5 base, h 5 height, l 5 length, w 5 width, d 5 diagonal, a 5 apothem, P 5 perimeter, r 5 radius Ratio of areas 5 a : b 2 3 Ratio of volumes 5 a : b (p. 374) (p. 737) 3 (p. 848) Given a quadratic equation ax 2 1 bx 1 c 5 0, the solutions are given by the formula: } 6 Ïb2 2 4ac x 5 2b }} 2a (pp. 641, 883) Tables 923