Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
PTG 0016 Trigonometry and Coordinate Geometry Tutorial 1.1: Trigonometric Functions 1) Draw each angle. a) 135° b) 450° c) 2) Convert each angle to a decimal in degrees. Round the answer to two decimal places. a) 40° 10’ 25’’ Ans: 40.17° b) 9° 9’ 9’’ 3) Convert each angle to D°M’S’’ form. Round the answer to the nearest seconds. a) 40.32° Ans: 40°19’12’’ b) 18.255° 4) Convert each angle in degrees to radians. Express the answer as a multiple of . a) 30° Ans: b) 180° Ans: radians c) -135° 5) Convert each angle in radians to degrees. a) Ans: 60° b) 6) Convert each angle in degrees to radians. Express your answer in decimal form, rounded to two decimal places. a) -40° Ans: -0.70 radian b) 125° 7) Convert each angle in radians to degrees. Express your answer in decimal form, rounded to two decimal places. a) 3.14 Ans: 179.91° b) 6.32 8) Find the values of the six trigonometric functions of the angle (a) 5 12 in each figure. (b) 3 2 (c) 1 9) Use identities to find the exact value of each of the four remaining trigonometric functions of the acute angle . a) = , = b) = , = 10) Use the definition or identities to find the exact value of each of the remaining five trigonometric functions of the acute angle . a) = b) = c) =2 11) Use Fundamental Identities and/or the Complementary Angle Theorem to find the exact value of each expression. Do not use a calculator. a) °+ ° Ans: 1 b) Ans: 1 c) Ans: 0 d) - e) f) 1 Ans: 0 g) °- - ° h) . i) + = , use trigonometric identities to find the exact value of 12) Given a) b) c) d) . ° 13) Given = , use trigonometric identities to find the exact value of a) Ans: b) ° Ans: c) Ans: d) e) Ans: 14) Given a) b) c) d) = use trigonometric identities to find the exact value of 15) Given a) = use trigonometric identities to find the exact value of Ans: b) Ans: 15 c) Ans: 4 d) Ans: 16) Given the approximation exact value of a) b) c) d) e) f) g) h) , use trigonometric identities to find the 17) Given f( ) = . Find the exact value of each expression of each expression if 60 . Do not use a calculator. a) Ans: = b) f ( ) c) [f( )]2 d) 2 f( ) Ans: e) 18) Find the exact value of each expression. Do not use a calculator. a) Ans: b) + c) –4 d) °+ ° Ans: 19) Use a calculator to find the approximate value of each expression. Round the answer to two decimal places. a) b) c) =0.47 = 0.38 = 0.31 d) e) = 3.73 = 0.31 20) A point on the terminal side of an angle six trigonometric function of a) (-3, 4) b) (2, -3) is given. Find the exact value of each of the c) ( 21) Use a coterminal angle to find the exact value of each expression. Do not use a calculator. a) Ans: b) 22) Name the quadrant in which the angle a) Ans: lies in quadrant II. b) 23) Find the reference angle of each angle. a) -30 Ans: reference angle = 30 b) 120 Ans: reference angle = 60 c) 210 d) Ans: reference angle = e) f) -135 g) h) Ans: reference angle = 80 i) 24) Use the reference angle to find the exact value of each expression. Do not use a calculator. a) Ans: -2 b) Ans: c) d) Ans: e) f) Ans: g) h) 25) Find the exact value of each of the remaining trigonometric functions of a) = , Ans: b) = c) = Ans: , , d) = Ans: e) = 2, , 26) Use the fact that the trigonometric functions are periodic to find the exact value of each expression. Do not use a calculator. a) sin405 Ans: b) tan405 Ans: 1 c) csc450 Ans: 1 d) cot390 e) f) g) h) 27) Use the even-odd properties to find the exact value of each expression. Do not use a calculator. a) sin(-60°) Ans: b) tan(-30°) Ans: c) Ans: -1 d) e) 28) Find the exact value of each expression. Do not use a calculator. a) + Ans: -1 b) + 29) Determine the amplitude and period of each function without graphing. a) y = -sin( ) Ans: amplitude, A = 1 Period, T = 4π b) y = 6 sin(πx) c) y = - 30) Graph each function. Be sure to label key points and show at least two cycles. a) y = 4 cos (x) b) y = cos(4x) Ans: c) y = - cos(2x) d) y = 2 sin(x) + 3 e) y = -6 +4 f) y = 5 – 3sin(2x) Ans: