Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
SSCE 1793 LISTS OF FORMULAE Trigonometric Hiperbolic cos2 x + sin2 x = 1 sin 2x = 2 sin x cos x ex − e−x 2 ex + e−x cosh x = 2 cosh2 x − sinh2 x = 1 cos 2x = cos2 x − sin2 x 1 − tanh2 x = sech2 x sinh x = 1 + tan2 x = sec2 x cot2 x + 1 = cosec2 x = 2 cos2 x − 1 coth2 x − 1 = cosech2 x = 1 − 2 sin x 2 tan x tan 2x = 1 − tan2 x sin(x ± y) = sin x cos y ± cos x sin y 2 cos(x ± y) = cos x cos y ∓ sin x sin y tan x ± tan y tan(x ± y) = 1 ∓ tan x tan y 2 sin x cos y = sin(x + y) + sin(x − y) 2 sin x sin y = − cos(x + y) + cos(x − y) 2 cos x cos y = cos(x + y) + cos(x − y) sinh 2x = 2 sinh x cosh x cosh 2x = cosh2 x + sinh2 x = 2 cosh2 x − 1 = 1 + 2 sinh2 x 2 tanh x tanh 2x = 1 + tanh2 x sinh(x ± y) = sinh x cosh y ± cosh x sinh y cosh(x ± y) = cosh x cosh y ± sinh x sinh y tanh x ± tanh y tanh(x ± y) = 1 ± tanh x tanh y Inverse Hiperbolic Logarithm sinh−1 x = ln(x + ax = ex ln a logb x loga x = logb a √ x2 + 1), −∞ < x < ∞ √ cosh−1 x = ln(x + x2 − 1), x ≥ 1 ( ) 1 1+x −1 tanh x = ln , −1 < x < 1 2 1−x 1 SSCE 1793 Differentiations d [k] = 0, dx Integrations ∫ k constant d n [x ] = nxn−1 dx d 1 [ln |x|] = dx x d [cos x] = − sin x dx d [sin x] = cos x dx d [tan x] = sec2 x dx d [cot x] = −cosec2 x dx d [sec x] = sec x tan x dx d [cosec x] = −cosec x cot x dx d x [e ] = ex dx d [cosh x] = sinh x dx d [sinh x] = cosh x dx d [tanh x] = sech2 x dx d [coth x] = −cosech2 x dx d [sech x] = −sech x tanh x dx d [cosech x] = −cosech x coth x dx d ln | sec x + tan x| = sec x dx d ln |cosec x + cot x| = −cosec x dx kdx = kx + C ∫ xn dx = ∫ xn+1 + C, n ̸= −1 n+1 dx = ln |x| + C x ∫ sin x dx = − cos x + C ∫ cos x dx = sin x + C ∫ sec2 x dx = tan x + C ∫ cosec2 x dx = − cot x + C ∫ sec x tan x dx = sec x + C ∫ cosec x cot x dx = −cosec x + C ∫ ex dx = ex + C ∫ sinh x dx = cosh x + C ∫ cosh x dx = sinh x + C ∫ sech2 x dx = tanh x + C ∫ cosech2 x dx = − coth x + C ∫ sech x tanh x dx = −sech x + C ∫ cosech x coth x dx = −cosech x + C ∫ sec x dx = ln | sec x + tan x| + C ∫ cosec x dx = − ln |cosec x + cot x| + C 2 SSCE 1793 Integrations Resulting in Inverse Functions Differentiations of Inverse Functions ∫ d 1 du [sin−1 u] = √ , |u| < 1. · dx 1 − u2 dx √ d −1 du [cos−1 u] = √ · , |u| < 1. 2 dx 1 − u dx ∫ d 1 du [tan−1 u] = . · 2 dx 1 + u dx ∫ (x) dx = sin−1 + C. a a2 − x2 a2 (x) 1 dx = tan−1 + C. 2 +x a a (x) 1 dx = sec−1 + C. a a |x| x2 − a2 √ −1 du d · [cot−1 u] = . dx 1 + u2 dx ∫ d 1 du √ [sec−1 u] = , |u| > 1. · 2 dx |u| u − 1 dx −1 du d √ · [cosec−1 u] = , |u| > 1. 2 dx |u| u − 1 dx ∫ 1 du d · [cosh−1 u] = √ , |u| > 1. 2 dx u − 1 dx d −1 du √ [cosech−1 u] = · , u ̸= 0. 2 dx |u| 1 + u dx 3 √ (x) dx + C, x > 0. = cosh−1 a x2 − a2 dx a2 − x2 1 ( ) −1 x + C, tanh a a = ( ) 1 coth−1 x + C, a a |x| < a, |x| > a. ∫ (x) dx 1 √ = − sech−1 + C, a a x a2 − x2 0 < x < a. ∫ x dx 1 √ = − cosech−1 + C, 2 2 a a x a +x 0 < x < a. d 1 du [coth−1 u] = · , |u| > 1. dx 1 − u2 dx −1 d du [sech−1 u] = √ , 0 < u < 1. · 2 dx u 1 − u dx (x) dx + C, a > 0. = sinh−1 a x2 + a2 ∫ d 1 du [sinh−1 u] = √ · dx u2 + 1 dx d 1 du [tanh−1 u] = · , |u| < 1. dx 1 − u2 dx √