Download SSCE 1793 LISTS OF FORMULAE Trigonometric cos2 x + sin2 x = 1

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
SSCE 1793
LISTS OF FORMULAE
Trigonometric
Hiperbolic
cos2 x + sin2 x = 1
sin 2x = 2 sin x cos x
ex − e−x
2
ex + e−x
cosh x =
2
cosh2 x − sinh2 x = 1
cos 2x = cos2 x − sin2 x
1 − tanh2 x = sech2 x
sinh x =
1 + tan2 x = sec2 x
cot2 x + 1 = cosec2 x
= 2 cos2 x − 1
coth2 x − 1 = cosech2 x
= 1 − 2 sin x
2 tan x
tan 2x =
1 − tan2 x
sin(x ± y) = sin x cos y ± cos x sin y
2
cos(x ± y) = cos x cos y ∓ sin x sin y
tan x ± tan y
tan(x ± y) =
1 ∓ tan x tan y
2 sin x cos y = sin(x + y) + sin(x − y)
2 sin x sin y = − cos(x + y) + cos(x − y)
2 cos x cos y = cos(x + y) + cos(x − y)
sinh 2x = 2 sinh x cosh x
cosh 2x = cosh2 x + sinh2 x
= 2 cosh2 x − 1
= 1 + 2 sinh2 x
2 tanh x
tanh 2x =
1 + tanh2 x
sinh(x ± y) = sinh x cosh y ± cosh x sinh y
cosh(x ± y) = cosh x cosh y ± sinh x sinh y
tanh x ± tanh y
tanh(x ± y) =
1 ± tanh x tanh y
Inverse Hiperbolic
Logarithm
sinh−1 x = ln(x +
ax = ex ln a
logb x
loga x =
logb a
√
x2 + 1), −∞ < x < ∞
√
cosh−1 x = ln(x + x2 − 1), x ≥ 1
(
)
1
1+x
−1
tanh x = ln
, −1 < x < 1
2
1−x
1
SSCE 1793
Differentiations
d
[k] = 0,
dx
Integrations
∫
k constant
d n
[x ] = nxn−1
dx
d
1
[ln |x|] =
dx
x
d
[cos x] = − sin x
dx
d
[sin x] = cos x
dx
d
[tan x] = sec2 x
dx
d
[cot x] = −cosec2 x
dx
d
[sec x] = sec x tan x
dx
d
[cosec x] = −cosec x cot x
dx
d x
[e ] = ex
dx
d
[cosh x] = sinh x
dx
d
[sinh x] = cosh x
dx
d
[tanh x] = sech2 x
dx
d
[coth x] = −cosech2 x
dx
d
[sech x] = −sech x tanh x
dx
d
[cosech x] = −cosech x coth x
dx
d
ln | sec x + tan x| = sec x
dx
d
ln |cosec x + cot x| = −cosec x
dx
kdx = kx + C
∫
xn dx =
∫
xn+1
+ C, n ̸= −1
n+1
dx
= ln |x| + C
x
∫
sin x dx = − cos x + C
∫
cos x dx = sin x + C
∫
sec2 x dx = tan x + C
∫
cosec2 x dx = − cot x + C
∫
sec x tan x dx = sec x + C
∫
cosec x cot x dx = −cosec x + C
∫
ex dx = ex + C
∫
sinh x dx = cosh x + C
∫
cosh x dx = sinh x + C
∫
sech2 x dx = tanh x + C
∫
cosech2 x dx = − coth x + C
∫
sech x tanh x dx = −sech x + C
∫
cosech x coth x dx = −cosech x + C
∫
sec x dx = ln | sec x + tan x| + C
∫
cosec x dx = − ln |cosec x + cot x| + C
2
SSCE 1793
Integrations Resulting
in Inverse Functions
Differentiations of
Inverse Functions
∫
d
1
du
[sin−1 u] = √
, |u| < 1.
·
dx
1 − u2 dx
√
d
−1
du
[cos−1 u] = √
·
, |u| < 1.
2
dx
1 − u dx
∫
d
1
du
[tan−1 u] =
.
·
2
dx
1 + u dx
∫
(x)
dx
= sin−1
+ C.
a
a2 − x2
a2
(x)
1
dx
= tan−1
+ C.
2
+x
a
a
(x)
1
dx
= sec−1
+ C.
a
a
|x| x2 − a2
√
−1
du
d
·
[cot−1 u] =
.
dx
1 + u2 dx
∫
d
1
du
√
[sec−1 u] =
, |u| > 1.
·
2
dx
|u| u − 1 dx
−1
du
d
√
·
[cosec−1 u] =
, |u| > 1.
2
dx
|u| u − 1 dx
∫
1
du
d
·
[cosh−1 u] = √
, |u| > 1.
2
dx
u − 1 dx
d
−1
du
√
[cosech−1 u] =
·
, u ̸= 0.
2
dx
|u| 1 + u dx
3
√
(x)
dx
+ C, x > 0.
= cosh−1
a
x2 − a2
dx
a2 − x2
 1
( )
−1 x

+ C,
 tanh
a
a
=
( )

 1 coth−1 x + C,
a
a
|x| < a,
|x| > a.
∫
(x)
dx
1
√
= − sech−1
+ C,
a
a
x a2 − x2
0 < x < a.
∫
x
dx
1
√
= − cosech−1 + C,
2
2
a
a
x a +x
0 < x < a.
d
1
du
[coth−1 u] =
·
, |u| > 1.
dx
1 − u2 dx
−1
d
du
[sech−1 u] = √
, 0 < u < 1.
·
2
dx
u 1 − u dx
(x)
dx
+ C, a > 0.
= sinh−1
a
x2 + a2
∫
d
1
du
[sinh−1 u] = √
·
dx
u2 + 1 dx
d
1
du
[tanh−1 u] =
·
, |u| < 1.
dx
1 − u2 dx
√
Related documents