Download Quantum number

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Quantum simulation of 2D topological
physics in a 1D array of optical cavities
Xi-Wang Luo (罗希望)
Work with Zheng-Wei Zhou (周正威) &
Xingxiang Zhou (周幸祥)
Key lab of Quantum Information, USTC
冷原子物理博士生论坛 长春
Outline
• Introduction
– Orbital angular momentum of photon, degenerate
cavity
• 1D simulator
– Cavity chain, 2D gauge field
• 2D physics
– QHE, edge state, topological phase transition
• Summary
Orbital angular momentum (OAM)
Helical phase
Wave front
Spatial light
modulator
e
 il
Laguerre-Gaussian modes
p: radial mode index
Vertical field :
e
 ikz
Quantum
number l :
OAM
Unlimited
Science 340, 28 (2013)
Our idea: Quantum simulation.
Gauge field & Topological
physics
How?
Science 338, 2 (2012)
Degenerate cavity
Degenerate condition:
Unit ray matrix
E1 ( x1 , y1 )   G( x1, y1; x0 , y0 ) E0 ( x0 , y0 )
G depends on : ray matrix [A,B;C,D]
Delta function : Unit ray matrix
Resonance condition: kL  2n
Optical design
A single cavity
1D cavity array
(a)
)
)+1
!"
! "$%
&' %
&' (
#"
&' %
&' (
#"$%
(b)
)+2
! "$(
&' %
&' (
#"$(
•Bloch theory
•Periodic & linear
iK y 
a j ,l 1  e
a j ,l ; a j 1,l  eiK x  a j ,l
•Transfer matrix
M BS
i
r

 it
 r
it 
 
r

i

r 
•Tight binding approach
 j ,l ; j 'l '   dr
  ei 2x
0
 (r )   0 (r  R j ',l ' )  E *j ,l E j ',l '
2
Effective optical circuit
Dispersion relation
0 | r |2
  0  2 cos(K x -2x )+cos(K y -2 y )  ,  
2
Hamiltonian
Abelian gauge field
Ax , y  2x , y
Gauge potential (field)
 y  j0
x  l0
•Non-Abelian gauge field
•Polarization--spin
•Wave plate
e
iAx , y
Ax , y  x , y  1, 2
2D physics
Butterfly
Edge state
0
E
Quantum spin Hall effect
Quantum Hall effect
e2
 xy  C
h
Probing scheme
Driving-damping dynamic
Input-output
  diag{ 1,  2 ,,  n ,}
Photonic transmission
System spectrum & edge state
Butterfly spectrum
Ttot 
j ',l ' 2
|
T
 j ,l 0 |
Cylindrical boundary
No backscattering
j ',l ', j
Unidirectional
Abelian
  2.2
  1
  2.2
Edge state transport
OAM distribution
Connection ?
Chern number
OAM displacement
le 

j ',l ' 2
l
'
|
T
 j ,0 |
jedge j ',l '
Cylindrical boundary
Quantum number k y
In the gap—edge state
Chern number
le   sgn( vm )  Ctot
m
Error bar: ,  , 
0  1 / 20
Non-Abelian
Abelian
0  1 / 6
Topological quantum phase transition
Band structure
0  0,0.075,0.125
0  1.5
Topological quantum phase transition
Polarized edge state
Topological insulator
0  0
  1.6
Normal insulator
0  0.125
Measurement of Chern number
Chern number
C
1


dk
dk


A
(k x , k y ) 
x
y  k

z
2 i
A  u  k u
u  u0 ,..., uq1 
umq q (kx , k y )  umq (kx , k y )
Gauge transformation
e
if ( k x , k y )
u
C is invariant
Global Stokes theorem ?
 
1
C
dk  A( k x , k y )

2i
C Always Zero
Brillouin zone : no boundary
However,the phase of
Bloch wave is not well
defined globally over
the Brillouin zone –
nontrivial topology.
No global Stokes theorem!
Measurement of Chern number
e
if ( k x , k y )
u
0  1 / 6
1
Regime B1, u0 is real.
1
Regime B2, u3 is real.
Phase mismatch at edge:
u
i ( kx ,k y )
B1
e
u
B2
Separate Stokes therom
u13  0 u10  0
Measurement of Chern number
j , ql l
T (k x , k y , lq )  F T0,0 q 
T (k x , k y )  i k x , k y E

  E  i / 2
E 0,0
u  T (k x , k y , 0),..., T (k x , k y , q  1) 
| T0,0j ,l |2
  arg T (k x , k y ,3)   arg T (k x , k y , 0) 
summary
• 2D physics in 1D simulator
– OAM
• Connection between transmission coefficient
and topological invariant
– Chern number
• Topological phase transition
– QSH
More detail : Nature Communications 6, 7704 (2015).
Thanks for your attention !
谢谢!
Related documents