Download Document

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Evaluate each indefinite integral.
!
!
!
Integration by Substitution
8x 3
2
!
5
4
(5 + ln (x))
3
−5
3
dx; −16x
u = −2x
(
−4x+45− 1) dx; u = −4x 4 4)
− 1 (5x 4 + 5) ⋅ 20x 3 dx; u = 5x 4 + 5
5)
dx; u = 5 + ln
5 2)
4
3
2
3
(oftware
Kuta
Software
Name___________________________________
−2x + 5- )Infinite
x
Calculus
Name___________________________________
Kuta−9x
Software
Infinite
Calculus
Name___________________________________
(−3x 3 --+Infinite
(3x 4 + 4) 4 dx
9)
1) dx Calculus
10) 12x
!
ration by Integration
Substitutionby Substitution
(
Date________________
Period____
Date________________
Period____
Date________________
Period____
Evaluate
each
Evaluate
each indefinite
indefinite
integral. Use
Use the
the provided
provided substitution.
substitution.
ate each indefinite
integral.
Use the integral.
provided
substitution.
oftware - Infinite Calculus
Name___________________________________
Kuta
Software
Infinite
Calculus
Name___________________________________
Evaluate
each --indefinite
integral.
8x 3
Kuta
Software
Infinite
Calculus
Name___________________________________
4
5
−5
4
5
5
3
4
4
5
−5
4
5
5
3
4
5
−5
3)
−
4
5− 1)) dx; u = −3x − 1
−15x
−4x
11))1 dx;
uu4== −4x
−− 11 u = −2x + 5
titution
Integrals
1)
−15x
−3x
−− 11 dx; u = −3x −2)1 −16x 3 (−4x 4 −2)
2)
−16x
−4x
dx;
−4x5 4 dx;
(−3x 5 for
Date________________
Period____
15x
−1)
1)Definite
dx;
u =((−3x
−3x
1) −16x
dx; u((=
−4x−4− −
(−2x + 5) Period____
50x
Substitution
for
Definite
3x
− 5Integrals
3 4 dx; Date________________
3 u = e 3x
4u = 5x 2 + 5
2 (e
3 by
Integration
Substitution
)
Date________________
Period____
3) 9)
6e 3x−9
cos
−
5
dx;
4)
(
)
1) dx
10)sec (12
x (−3 xin +
ss each definite
integral
terms
of u, but do not evaluate.
5xx2 +35x) + 4 dx
integral
in terms
of u,provided
but do not
evaluate.
Express
Evaluateeach
eachdefinite
indefinite
integral.
Use the
substitution.
1
2
5
+ ln8x( x))
3 1 4
2
3
3
5
4
Kuta Software - Infinite
Calculus
4+28 ln
dx; u 0(=5x4x
2) 4sec
−12x
dx; (u4x
=2)4x
1= sec
(4x
4x(4x
⋅ tan−Calculus
4x1)⋅ sec
dx;33 −uName_____________________________
5Name___________________________________
7) ) 36x3 3 (3x
+ 3) dx; u = 3x 4 +
- Infinite
Name_____________
+2x+5)1(3x2)⋅320x 3 −3
dx; u2 = Kuta
5x24 +Software
56)
3
2 4)
2
3
4
4
2
(
)
5
1)
dx;
u
=
4
x
+
1
2)
−12
x
4
x
−
1
dx;
u
=
4
x
−
1
5
4
(4x x+ 1) 11)
(
)
−12x
−4x + 2 dx 5 x − 3
0
1) 20
xsin
2) 16
x − 2dx) dx; u = 4 x − 2
(3xx ⋅−sec
12)
3) (⋅ 415x
2 (5 x2 − 3) dx; u =
1)
0
Substitution
for
Definite
Integrals
−1 (4 x +
Date________________
Per
Evaluate
Date________________
SubstitutionPeriod____
for Definite Integrals
Date____
each indefinite
integral.
Evaluate eachExpress
indefinite
integral.
each
definite
integral
terms ofintegral
u, but do
not evaluate.
e provided substitution.
Express
eachindefinite
in terms
of u, but do not evaluate.
3
2
3
9) −9 x (−3 x 0+ 1) dx
10) 12 x 3 (3 x 4 1+ 4) 4 dx
1
4
2 x (3x 4 + 3) 0dx4 2 8 x
3 (sec 3−3x
3
(3x
5 ) dx
5) −36x 3 sec
3)4⋅8tan
6) −9sec
−3x2)⋅ tan
−3xx⋅2sec
33 2 + Kuta
22 −12
3 1)
(
)
3
3
2
dx;
u
=
4
x
+
1
4
x
−
1
dx;
u =x 24(4xName________
2 Calculus
Software
Infinite
Calculus
Name_______________________
(
))
5
+
ln
x
(
)
8x
8x
2)
16x
⋅
sec
4x
−
2
dx;
u
=
4x
−
2
Kuta
Software
Infinite
8x
44
1)
dx;
u
=
4
x
+
1
2)
−12
x 3−
−1ln1)( x)dx; u
2
2
3
4
3 4 5) 33
44
44 dx; u = 5
+
3)
−
dx;
u
=
−2x
+
5
3)
−
dx;
u
=
−2x
+
5
3
2
(
)
4
3
4
x
+
1
2
dx; u = −2x
+−155
((5x
)) 03Software
4) dx;
5xu++
20x
dx; uux== 5x
5x ++ 55
4)
⋅⋅+20x
4)x +(5x
=555x
5 dx;
1) + 5) ⋅ 20x
−1 (4
Kuta
- Infinite 0Calculus
((−2x
−2x44 ++ 55))5Integration
(−2x 4 + 5) 5
by
Substitution
−3
2
3
Date______________
Integration by 12)
Substitution
Da
11) −12 x (−4 x + 2) dx
(3 x 5 − 3) 5 ⋅ 15 x 4 dx
!
!!
!
!
! !
!!!
!
!!
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
Substitution
for
Integrals
Definite
Evaluate each indefinite
Use the integral.
provided
substitution.
1 integral.
Evaluate
each indefinite
Use the provided
substitution.
2
1
24x
2 2
6x3( (x 2 −4 1) )dx;
u = x 2 2− 41 2
4)
dx;
u
=
4x24
+xx4 1
5
4
4 2
each
definite
in terms of u, bu
(
6x 3x + 3 3)
dx;
u
+
x
4x
1Express
3=
xx3x
33x dx;
3 x u 8)
(
)
)
2− 1) 2dx;4)u = 4x − 50
(
)
6)
4sec
4x
⋅
tan
4x
⋅
sec
4x
dx;
=
sec
6
x
−
1
u
=
x
−
1
dx;dx;
u=
4 x352x+2 +
4 integral
(
)
(
)
2
2
4x
+
4
3) 6e cos
e
−
5
dx;
u
=
e
−
5
4)
u
2
4 1)
©z n2D0E1T3Y HKHug
t=
TaQ 8SloAfWtcw5aCr8eE JL25
KLTCZ.A h QACl04l8 erUi8gCh4t1sX Pr0eWsbe3IrnvCeVdZ.6 w BMWaYdmeV
4
3
2
2
2
0
2
) dx;
xsin (5 x −1)3) dx;
u = 5(x5 x − −3 3) dx;
x − 216
usec
=24(x49w4nixitvh−46 UIJn−2
5− 3) 2)4x 16 x ⋅ sec (4 2)
(
)
13) −1(−2x
− 4) ⋅ −32x20dx
44x
x=(55+xx4)+
20 xsin
u
x
⋅
Name___________________________________
sec
5
0
0
(
14) e − 4 ⋅ 8e dx
8x
2
1)
dx;
u
=
4
x
+
1
2
2
Date________________ Period____
−13(4 x + 1)
−3
−12
x 2 (+−4lnx2 34x+)2) dx
(33x 5 − 3) 51 ⋅ 1524x 4x dx
u, but do not11)
evaluate.
(−4
12) 4x
5cos
2
1
50x
2
2
2
2
7) 4)−
8) 2
dx
2
21
3)2 56 x(dx;
xdx−u 1=) 5x
dx;
u
=
x
−
4)
dx;
u
=
4 x 224
+ x4
+
5
4
(
)
3)
6
x
x
−
1
dx;
u
=
x
−
1
4)
dx; u = 4 x 2
2
(
)
2
x
csc
x
−
1
5
5 2
3
4
1((sec
(
)
(
))
5
5x
+
5
5
+
ln
x
2 3x 4 + 3
(
)
4
x
+
4
(
))
(
)
5
+
ln
x
4
−1
7)
36x
3x
+
3
dx;
u
=
0
ln (3(xx−1
4x ⋅⋅ sec
5 + ln ( x)) 5)
)4x))
+ 4((4x
) 6) 4sec
6) ⋅ sec
4sec
⋅ tan
tanu4x
sec(44x
4x
dx;0 u(u4==x sec
sec
5) uSoftware
dx;3 uuCalculus
= integral.
5+
4 4x
Evaluate
2
((4x
6)
4sec
Kuta
Infinite
Name___________________________________
- Infinite Calculus
(4x4x) ⋅dx;
) )) dx;
)− dx;
4x ⋅ tan 4x
= sec
dx;
= 5 +each
(4x(-3xindefinite
−12x
1) dx;= 5u += ln
4x −) 1Name___________________________________
2)
xln
1
x
x
4
13) 0 (−2 x 4 − 4) for
⋅ −32
x 3 dx
x
(e 4x −−34)x5 ⋅⋅tan
Substitution
14)
8Date________________
e 4−3
dx
n for Definite
Integrals
3
4 Definite Integrals
4
Date________________
Period____
(
)
(
)
5)
−36
x
sec
3
x
+
3
⋅
tan
3
x
+
3
dx
6)
−9sec
x ⋅ sec 2 (sec −3 x) dx Period____
ate each definite
integral.
Evaluate each definite integral.
Express
each
integral
terms of u, but do not evaluate.
definite integral
terms4definite
of u, but
do notin
evaluate.
50
x
1
8) 0x(in
50 x
3 x− 1
3x
3x
4x − 1) dx;3)u = 64x
3x
3x
8x
cos (e -1−3)5) dx;
ucos
=16x
e (e 3−x 5− 5) dx;1 u =16
4)
dx; uLLC= 5 x 2 2+ 5 dx;
6
e
e
−
5
4)
LKLTCZ.A h QACl0
l8 erUi8gCh4t1sX Pr0eWsbeIrnvCeVdZ.6 w BMWaYdmeV 9wnii2
tvh6 UIJn1fqiLnzi8tseU yCva5lCcfutlpuOsb.t e
Worksheet by Kuta Software
2
2
8
x
x
0 = 2x + 33
1 4x + 4 2
−
dx;
sec4 x(52 x+ 4+ 5)
sec (5 x + 5)
x(4x8+x 5) dx dx; u = 22x 2 + 3 1 6)
16)
2x
+33 dx;
dx 32u =
5)dx; u−
6) u =5x
2
2
2
3
2
3) 2
2
2
2
2
2
3
3
2
2
(2xdx;
) 215)
(
+u3=
4x
+
4
(
)
1)
dx;
u
=
4
x
+
1
−12
x
4
x
−
1
dx;
u
=
4
x
−
1
(
)
0(4x − 1) dx;2)u = 4x
3)
6
x
x
−
1
dx;
u
=
x
−
1
(
)
(
)
4x
+
1
2)
−12x
−
1
2
x
+
3
4
x
+
4
−3
0
2
2
(4 x 2 +−3x
1) ⋅ tan
1)
−1
6) −1 −9sec
0 −3x) dx
−3x ⋅ sec 2 (sec
0
1
each3 definite
integral.
4
4Evaluate
Evaluate
each definite integral. 4 x
5
13) (−2 x − 4) ⋅ −32 x dx
14) (e − 4) ⋅ 8e 4 x dx
0
1
1
1
8x 2 4 0
16 x
5
4
24x
3
4
2
8
x
16
5 dx;
4 HKHugtTaQ
)
(
)
7)
36x
3
u
=
3x
3
8)
4x
−
1
dx;
=
4x
−
1
2 xintegral.
3 (3x
4 + dx;
44 +
5)
−
dx;
u
=
2
x
+
3
6)
dx;
u
=
4 xr2nvCeVdZ.6
+ xw 4BMWaYdmeV 9wniidx;
©z
n2D0E1T3Y
8Slou
AfWtcw5aCr8eE
JLKLTCZ.A
h QACl0l8
erUi8gCh4t1sX
tvh6 UIJn1fqiLnzi8tseU yCva5lCcfu2t
5
4
Evaluate
each
indefinite
Evaluate
each
indefinite
integral.
3
4
4
4)
u
=
4x
+
u =8)u2 x= x4x
+(4x
3− −1 1) dx; u2 = 4x2− 16) Pr0eWsbeI
u = 4x
3x +2+ 33) dx;2 u = 23x5) + 3 −8) x(4x 2− dx;
)
6x (3x + 3)7)dx;36x
u =2(3x
1
dx;
2
2
2
(
)
(
)
2
x
+
3
4
x
+
4
(
)
4x
+
4
−3
0
(
)
(
)
2
x
+
3
4
x
+
4
0
3
−3
0
5cos (−43 + ln 4 x )
4x
(
)
15)
x
4
x
+
5
dx
5
x
2
x
+
3
7)
−
dx
8)
dx
3
416)
4
3
4
4(
x (sec
tan( (x34 x− 1+) 3)6)dx −9sec −3 x ⋅ tan
6)−3 x−9sec
x Software
⋅ −3
tanxLLC
−
©Q g2c0N103Q wKbu1tuaa MSRopfHtiwLairbej eLSLaCZ.x N gAUlmlz hrkiTgvhDtPsB frDe0s5earxvge5)
HwYiZtMhL
yfniInUiptVeL (nC3
4aPlux
cpu5)
1lVue+
sv.R 3)−36
Worksheet
(Kuta
)
−36
xmIpnsec
⋅ tan
3 x 3+x3)+dx3) ⋅csc
⋅ sec 2by−3
sec
x Xdb.R H vMwaBdOej
!!
!
! !!
!!
!!
!
!!!!
!
!!
!!
!! !
0
2
dx;
!
!!!
!
!
!
! !
!
!!
!
!
!!
!
!
!
!
!
!!!
!
!
!!
!
!
1
8x
!!
!
!
! !
!
!
!
!
!
!
!
!
1
!
28 x
dx; u−= 4x
Evaluate
each
dx; u 2= 3 x
8)
u =definite
42 x 2 + 2integral.
24
x + 2 2 dx;
2
2
24x
2
( 4x )
(4xdx;+ u2)= 4)
u = x − 4)
1
0
4x 2 +0 4 (42x + 22 ) dx; u = 4 x + 4
2
2
−1
8)
dx
0 (4 x + 4) 0
0 (4x + 4)
8x
csc ( x 4 − 1)
5)
−
dx; u = 2 x 2 + 3
2
2
−3 (2 x + 3)
-2-16) 5 x 2 x +
©m k2U071e3T nK5uutiaP CSTovf4tiwNaMr9ek jLwLWCH.l p GAwlpl2 erpiygDhtt3nsv 0rZews5eWrTv1ePd5.s 7 AMqaPdTef MwBistxh2 OIHngf2iqnliPtPen vCna1lGcGuBlpulsT.Q
Worksheet by Kuta Softwa
15) x(4 x + 5) 0dx
13 dx
0
1
8
x
2
7)
18 x 2 (3 x 3 + 3)7) dx; 18
u =x 23(3x 3x 3++3 3) 2 dx; u = 3 x 3 + 38)
−
dx; u −
= 4 x 2 8+x2
dx; u = 4
2 8)
2
-12
©z n2D0E1T3Y HKHugtTaQ 8SloAfWtcw5aCr8eE
eU yCva5lCcfutlpuOsb.t
Worksheet
by Kuta Softw
2
(
1 JLKLTCZ.A h QACl0l8 erUi8gCh4t1sX
4 x + 2)
−1 Pr0eWsbeIrnvCeVdZ.6 w BMWaYdmeV 9wniitvh6 UIJn1fqiLnzi8ts
0
(
)
4
x
+
2
−1
-1tTaQ
w5a.6 Cr8w eBMWaYdmeV
E JLKLTCZ.A
rnvuCeVdZ
tseU yCva5lCcfutlpuOsb.t
16x
JLKLTCZ.A h©z
QACl0n2lD0E1T
8 erUi83gYCh4HKHug
t1sX Pr0
eWsb8SeloIrnAfWtc
vCeVdZ
9wh QACl0
niitvh6l8UIJernUi81fgqiCh4
Lnzti18stsXePr0U yeCWsbvae5lICcf
tlpuOsb.6.tw BMWaYdmeV 9wniitvh6 UIJn1fqiLnzi8-1Worksheet by0Kuta Software LLC Worksheet by Kuta Softw
2
+-13)
18x (3x
2
1) dx; u
2
3
3
2
7)
18ux=223x
3 x 3 +2 33
= 3)
x 2 −−116 x x −3 1 dx;
!
(
)
!
3
!
+ 13
!
8)
−
1
Worksheet by Kuta Software LLC
!
!
!
!
Related documents